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Higher order texture statistics impair contrast boundary
segmentation
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Texture boundary segmentation is conventionally thought to be mediated by global differences in Fourier energy, i.e., low-
order texture statistics. Here, we have examined the importance of higher order statistical structure of textures in a simple
second-order segmentation task. We measured modulation depth thresholds for contrast boundaries imposed on texture
samples extracted from natural scene photographs, using forced-choice judgments of boundary orientation (left vs. right
oblique). We compared segmentation thresholds for contrast boundaries whose constituent textures were either intact or
phase scrambled. In the intact condition, all the texture statistics were preserved, while in the phase-scrambled condition
the higher order statistics of the same texture were randomized, but the lower order statistics were unchanged. We found
that (1) contrast boundary segmentation is impaired by the presence of higher order statistics; (2) every texture shows
impairment but some substantially more than others; and (3) our findings are not related to scrambling-induced changes in
detectability. The magnitude of phase-scrambling effect for individual textures was uncorrelated with variations in their
amplitude spectra, but instead we suggest that it might be related to differences in local edge structure or sparseness.
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Introduction

Our rich perceptual experience of the shapes, objects,
and surfaces that make up the visual world relies on
successful segmentation of distinct regions in an image to
delineate the boundaries between them. The visual system
can detect boundaries defined by changes in a number of
properties, commonly divided into two categories: those
that can be distinguished based on a point-to-point
comparison of simple intensive properties such as lumi-
nance or color ( first order) and those that require two-
stage processing to distinguish, such as orientation, spatial
frequency, or contrast of textures (second order). Process-
ing of these first- and second-order boundaries is widely
thought to be mediated by distinct mechanisms (e.g.,
Allard & Faubert, 2007; Schofield & Georgeson, 1999).
First-order processing is relatively well modeled in terms
of linear Gabor-like spatial filters that ostensibly represent
V1 receptive fields. Second-order boundaries are inher-
ently more complex, and how they are segmented has
been a continuing subject of investigation.

We use the term “segmentation” not to refer to a specific
task but to refer to the process by which the visual system
detects second-order boundaries. In this paper, we examine
second-order vision through its simplest manifestation:
contrast boundary segmentation. It is well known that
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contrast boundary segmentation performance depends on
some of the properties of the texture over which the contrast
gradient is defined, i.e., the carrier. In particular, carrier
orientation orthogonal to the contrast boundary facilitates
contrast boundary detection at low spatial frequencies
(Dakin & Mareschal, 2000), and higher spatial frequency
carriers have been found to show an advantage as well
(Dakin & Mareschal, 2000; Sutter, Sperling, & Chubb,
1995). However, with relatively broadband noise, spatial
frequency content was found to have little impact on
detection (Schofield & Georgeson, 2003). These studies
were restricted to simple filtered noise carriers, and the
full extent to which a texture’s appearance is relevant to
the operation of second-order mechanisms remains to be
seen. In this paper, we address this issue by imposing
contrast modulations on textures sampled from natural
images to begin our examination of the importance of a
wide range of statistical structure on second-order vision.

It has long been clear that only a limited subset of a
texture’s properties are used by the visual system to
segment it from another texture. A classic demonstration
of this is our inability to segment pairs of textures whose
elements are readily discriminated—for example, upright
and inverted chevrons (Olson & Attneave, 1970) or Ts
and Ls (Beck, 1966; Bergen & Julesz, 1983). Such
observations led naturally to the idea that textures should
be thought of in fundamentally statistical terms and that
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their segmentation is based on a representation in which
only some image statistics are preserved. In the last two
decades, most of the work on mechanisms of texture
segmentation has been couched in terms of two-stage
filtering models (Bergen & Adelson, 1988; Landy &
Graham, 2004) that can be thought of as comparing the
global Fourier energy across a boundary. These models
have only been evaluated using simple synthetic textures,
and it is unclear how adequately such models can account
for human segmentation of textures, and boundaries
defined over textures, that contain a wider variety of local
features. Texture segmentation is an important example of
the emerging general idea that many of our perceptual
abilities seem to be based not on a perfect translation of
the retinal image but on “summary statistics”, a com-
pressed statistical representation in which only some
attributes of the retinal image are retained (Chong &
Treisman, 2003; Rosenholtz, 2011). There is evidence that
such a representation is automatically and pre-attentively
computed (Oliva & Torralba, 2001, 2007), and it appears
as though we make some judgments based only on a
subset of the statistics available in the image (Alvarez &
Oliva, 2008; Ariely, 2001; Chong & Treisman, 2003). In
at least some contexts, such as peripheral vision (Balas,
Nakano, & Rosenholtz, 2009), a statistical summary of the
information in the stimulus may be more relevant to
perception than the stimulus itself. Finding the most
appropriate summary statistics for a given task is both
informative about the mechanisms involved and important
to consider when evaluating the results of past studies or
designing stimuli for future experiments.

In this work, we employ a particularly useful and
popular way of describing image statistics using a Fourier
decomposition of the image. We can distinguish between
lower and higher order statistics based on the Fourier
power spectrum and phase spectrum. The lower order
statistics represented in the power spectrum describe the
global energy present in the image: luminance, contrast,
spatial frequency, and orientation. The phase spectrum
embodies higher order statistics that describe the spatial
distribution of that energy (Oppenheim & Lim, 1981;
Piotrowski & Campbell, 1982; Thomson & Foster, 1997).
For example, step edges in luminance occur when Fourier
components of the same orientation over a range of spatial
frequencies are phase-aligned in their zero-crossings; such
broadband edges are considered to be of particular interest
in statistics of natural images (Olshausen & Field, 1996;
Thomson, 1999).

While randomizing an image’s phase structure will
severely handicap identification of image content (Hansen
& Hess, 2007), some of the textural aspects of the image’s
appearance are preserved—particularly for textures with a
high degree of regularity (Emrith, Chantler, Green,
Maloney, & Clarke, 2010). While some aspects of overall
texture and shading may be captured by the power
spectrum (Tadmor & Tolhurst, 1993), several studies have
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shown that phase spectral information contributes to
human perception of isolated textures. Kingdom, Hayes,
and Field (2001) manipulated parameters of synthetic
micropattern textures to modify their contrast, skew and
kurtosis—they found that human observers could most
efficiently discriminate textures differing only in their
fourth-order statistics (kurtosis). Demonstrations of tex-
ture synthesis (Portilla & Simoncelli, 2000) showed that a
variety of higher order statistics are required to capture a
texture’s appearance when they are attentively examined,
though evidently only a subset of these higher order
statistics are necessary for pre-attentive discrimination of
textures (Balas, 2006). Motoyoshi and Kingdom (2010)
demonstrated that discrimination of random paired-Gabor
textures was enhanced by a co-circular relationship
between nearby orientational structures.

Even though information in the phase spectrum is
critical to higher level tasks such as texture appearance
judgments and can aid the discrimination of one texture
from another, its relevance to a pre-attentive, low-level
task such as texture segmentation remains unclear. The
popular conception of an energy model of segmentation
emphasizes global comparisons of lower order statistics,
but other models have been based on different sets of
statistics, some of which are higher order. Julesz (1962)
conjectured that texture segmentation mechanisms might
operate on only a subset of available statistics, i.e., the
relationship between the luminance values of any two
pixels at a given distance from one another. This theory
was later expanded to include relationships between
triplets (Julesz, Gilbert, & Victor, 1978) and quadruplets
(Julesz, 1981) of pixels. Graham, Sutter, and Venkatesan
(1993) demonstrated element arrangement patterns cre-
ated with oriented Gabor patches that can be readily
segmented along boundaries defined only by differences in
the relative positions of the texture elements, implying a
mechanism that is sensitive to phase information. To
achieve human-like segmentation in natural scenes by a
computer vision algorithm, Martin, Fowlkes, and Malik
(2004) and later Arbelaez, Maire, Fowlkes, and Malik
(2011) made use of higher order texture statistics along
with other boundary cues. They classified each pixel of an
image as belonging to one of a small collection of “textons”
based on the responses of a range of co-localized oriented
filters, followed by a second stage operator that compares
the texton histograms on opposing sides of a putative
boundary. Phase scrambling would remove the spatial
co-localization of filter responses that define these textons,
and so texton-based segmentation would be impossible.
Thus, there is evidence suggesting that higher order
statistics influence segmentation, but a systematic study is
difficult because what constitutes a “higher order statistic”
is unbounded and defined only by exclusion to consist of
anything that is not a lower order statistic. In this work, we
use natural image photographs to sample higher order
texture statistics that are likely to be critical to ecological
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vision and explore the relationship between these statistical
regularities and human performance on a texture segmen-
tation task.

The texture statistics most ecologically relevant to
segmentation are those occurring on either side of
boundaries that occur in natural images. However, photo-
graphs of natural texture boundaries would make poor
experimental stimuli for a number of reasons: (1) the
texture boundaries in natural images most often arise from
occlusions of one object by another, which typically are
accompanied by coincident luminance changes and, there-
fore, are not purely second order (Johnson & Baker,
2004); (2) experimentally manipulating the textures on
either side of a boundary is problematic without affecting
the boundary itself; and (3) boundaries in images from
natural scenes (excluding man-made structures) are rarely
straight, further complicating the preceding difficulty.
Instead, we approach the problem with photographs of
natural textures, which we can individually manipulate
and use as carrier patterns to construct synthetic envelope
boundaries. This semi-natural approach gives us the same
access to the higher order texture statistics that are present
in photographs of the real world, while affording the
benefits of using synthetic boundaries: experimentally
controllable texture statistics and a consistent boundary
shape without luminance artifacts.

We explore segmentation of boundaries defined by
contrast differences imposed across individual textures
rather than segmentation of a boundary between two
distinct textures, for two reasons. First, contrast gradients
are the simplest form of texture boundary and, thus, more
amenable to analysis. Second, this approach allows us to
deal with individual textures one at a time, affording a
better opportunity to investigate the effects of individual
differences in texture statistics.

Note that most previous studies of higher order texture
statistics and segmentation have explored whether it was
possible to segment boundaries defined by differences
in these statistics, such that they were necessary to do
the task (e.g., Julesz et al., 1978). On the other hand, in
these experiments, the higher order texture statistics are,
in principle, irrelevant to the task; instead, we ask
whether their presence facilitates or impairs segmentation
performance.

To evaluate the role of higher order carrier statistics in
contrast boundary segmentation, we look at psychophys-
ical performance under two conditions: natural textures
with all the statistics preserved (“intact” condition) or
phase-scrambled versions of the same natural textures in
which the higher order statistics have been randomized
but the lower order statistics remain the same (“scrambled”
condition). If the power spectrum provides the basis of
segmentation, we would expect to find no differences in
psychophysical performance between the intact and
scrambled conditions. If any higher order information is
utilized by the visual system in this task, we would expect
to see performance impaired in the scrambled condition.
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On the other hand, the boundary might be obscured by
higher order information in the texture, in which case we
would expect improved performance in the scrambled
condition.

General methods

Stimuli

The natural textures used in this experiment were
acquired from high-resolution photographs (3888 x
2592 pixels) taken in a variety of locations such as parks,
beaches, and botanical gardens. A digital SLR camera
(Canon Digital Rebel XTi) was used to take the photos in
RAW format with a linear gamma profile, which were then
converted to 16-bit TIFF and imported into Matlab. From
each of these photographs, we manually extracted candi-
date texture regions of 480 x 480 pixel squares.

The candidate images were then screened subjectively
by the authors to evaluate the extent to which they
exemplified key characteristics of “texture”: uniformity of
lightness, contrast, and granularity (Bergen, 1991; Kingdom
et al., 2001; Portilla & Simoncelli, 2000; Wilkinson, 1990;
Wilkinson & Wilson, 1998). We used these character-
istics to define our acceptance criteria for textures as
images that appeared to be relatively uniform and
composed predominantly of a single type of material
(such as grass, bark, or ripples in sand) or a homogeneous
mixture of materials (e.g., branches and leaves). We also
required the detail of the texture to be in focus and free of
prominent segmentable objects. Textures of man-made
materials such as bricks, concrete, or tiles were excluded.
Examples of textures excluded in this stage are shown in
(Figure 1A, top).

Figure 1. Examples of (A) excluded and (B) included natural
textures. (A, top) Images that were excluded due to a subjective
judgment that they were not sufficiently uniform, homogeneous, in
focus, or contained prominent segmentable objects. (A, bottom)
Images that were excluded during computer screening due to
inhomogeneity of luminance or contrast between two or more
quadrants. (B) Images that were included in the texture corpus.
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The textures that passed the subjective screenings were
converted to grayscale (using the Matlab function
rgb2gray) and further screened objectively for internal
homogeneity by comparing the luminance and RMS
contrast (Bex & Makous, 2002; Kingdom et al., 2001) of
four quadrants of the texture. If there were any pairwise
differences greater than 3 dB, the texture was excluded
(Figure 1A, bottom). Approximately 64% of the hand-
selected textures passed this test, providing a database of
239 natural texture images. Four examples of these
textures are displayed in Figure 1B.

The stimuli for all of our experiments used the textures
from this database as carrier patterns. Texture stimuli for
the baseline (“intact”) condition were created using the
texture as described above, to measure segmentation with
all the higher and lower order statistics present in grayscale
natural photographs. In the second (“scrambled”) condi-
tion, we phase scrambled the intact texture to remove the
higher order statistics. We created scrambled textures by
applying a Fourier transform to both the intact texture and a
white noise image of the same size. The phase values in the
natural texture were replaced with those of the white noise
and inverse-transformed, thus leaving the power spectrum
unchanged while completely randomizing the phases
(Dakin, Hess, Ledgeway, & Achtman, 2002).

To create the carriers, each texture was scaled to have a
mean value of 0, and its extreme values were clipped at
+3 standard deviations and scaled to fit in the range of
intensities between +1.0. This texture carrier was then
modulated by an envelope pattern to create a synthetic
contrast boundary. For our envelope, we used a half-disk
pattern with an oblique orientation boundary, graduated
over 20% of the image width with a cosine taper (Figure 2).
The final stimulus, S, is the product of the stimulus
window, W, ,, the carrier, C,,, and the envelope, E, ,,
scaled by the modulation depth, m:

Sy = Lo{l + cCyyW.,((1 + mE,,)/2)}, (1)

where |C, | < 1.0, |E, | < 1.0, and 0 < W, , < 1. L, is the
mean luminance, m is the modulation depth, and ¢ is a
contrast scaling factor that is adjusted to produce the
desired RMS contrast.

We used these stimuli to measure threshold values of
modulation depth (m) or carrier contrast, for intact (Figure 2,
left) and phase-scrambled (Figure 2, right) natural textures
using an envelope orientation judgment (+45 deg) in a two-
alternative forced-choice task. We presented the stimuli at a
suprathreshold contrast in all experiments unless otherwise
specified.

To prevent observers from performing the task by
monitoring the contrast of only one quadrant of the
texture, the phase of the envelope was randomly shifted
180 degrees from trial to trial. To further diversify the
stimulus appearance and impair observers’ ability to learn
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Figure 2. Examples of the stimuli used to determine modulation
depth thresholds in Experiments 1-3 shown at three modulation
depths (top to bottom: 75, 50, and 32). The envelope is a left- or
right-oblique half-disk contrast modulation applied to an (left)
intact or (right) phase-scrambled natural texture.

and use specific texture features, carrier textures were
randomly flipped vertically and/or horizontally on each
trial, prior to applying the contrast envelope.

The stimuli were presented on a CRT monitor (Sony
Trinitton Multiscan G400, 81 cd/m® 75 Hz, 1024 x
768 pixels), gamma-linearized with a digital video pro-
cessor (Bits++, Cambridge Research Systems) that allowed
us to present low-contrast stimuli without binarizing
artifacts by increasing the bit depth from 8 to 14 bits.
Stimulus patterns appeared in a central 480 x 480 pixel
patch on a mean gray background. Observers viewed the
stimuli from a distance of 114 cm, resulting in a stimulus
visual angle of approximately 6.5 degrees. The experiments
were run on a Macintosh (Desktop Pro, MacOSX) using
Matlab and PsychToolbox (Brainard, 1997; Pelli, 1997).
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Task

At the beginning of each trial, observers were presented
with a central fixation point and used a button press to
initiate each 100-ms stimulus presentation. The envelope
boundary was oriented 45 degrees either left or right
oblique, and observers indicated with a button press the
perceived orientation of the boundary. Feedback was not
provided as a precaution against aiding spurious cue
learning. The screen was maintained at the mean gray
background between stimulus presentations.

We measured thresholds using a method of constant
stimuli with five logarithmically spaced level values,
chosen to span an appropriate range as determined from
pilot experiments for each observer. A minimum of three
blocks of 100 trials, with 20 trials per level, was run for
each condition to yield a total of at least 60 trials per level.
Percent-correct data from a total of 600 trials were fit with
a logistic function, and a threshold was interpolated for
75% correct. Curve fitting was performed by the statistics
package Prism (GraphPad Software), and standard error
measurements were estimated with its bootstrapping
algorithm.

We tested the significance of the difference between
thresholds in the intact and scrambled conditions using a
two-tailed paired-samples #-test with a criterion a = 0.05
and measured the effect size (Kline, 2005) using Cohen’s
d with the standardizer s computed as

s=y/ot+03/2, (2)

where o and o, are the sample standard deviations of the
compared conditions.

This experiment examined whether an observer’s ability
to segment contrast boundaries is affected by higher order
statistics of carrier textures drawn from a large sample of
texture appearances. This was accomplished by compar-
ing modulation depth thresholds for contrast boundaries
with natural texture (“intact”) carriers and those with
phase-scrambled (“scrambled”) carriers.

Methods

To obtain a general picture of the contribution of higher
order statistics to segmentation, we measured modulation
depth thresholds for the texture library as a whole. On
each trial, a carrier texture was selected from the database
randomly without replacement within each block of 100
trials. At a suprathreshold carrier RMS contrast of 14.5%,

Arsenault, Yoonessi, & Baker Jr. 5

3 Intact

321 [ Scrambled

4 L v v v
JB LA AM JH

Observer

Modulation Depth Threshold (%)

Figure 3. Modulation depth threshold results from Experiment 1
for four observers for intact and scrambled texture conditions.
Thresholds were lower for the phase-scrambled textures (light
bars) than for the intact textures (shaded bars). Error bars
represent £1 standard error.

we measured modulation depth thresholds for each
observer in the intact and scrambled conditions. We
collected data from four experienced psychophysical
observers, three of whom (JB, AM, JH) were naive to
the hypotheses of the experiment.

Results

The results for Experiment 1 are shown in Figure 3.
Modulation depth thresholds for phase-scrambled textures
(light bars) are substantially lower than those for intact
textures (shaded bars) for each observer. We found a
large, statistically significant effect of phase scrambling
(t(3) = 14.71, p < 0.05, d = 2.86) with the average
observer’s intact threshold 2.36 dB above their scrambled
threshold. These results not only suggest that the presence
of higher order statistics in natural textures is a relevant
factor in performance on this task but also that segmenta-
tion improves when higher order statistics are removed.

In the previous experiment, we observed a difference in
thresholds for intact and phase-scrambled textures as
ensembles, providing evidence for a role for higher order
texture statistics in boundary segmentation. However,
since our textures vary widely in appearance, it is unclear
to what extent our result is uniformly representative across
textures or if some textures demonstrate a greater effect
of phase scrambling than others. In this experiment, by
comparing modulation depth thresholds for individual intact
and phase-scrambled textures, we aimed to determine what
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effect individual differences in texture appearance have on
modulation depth thresholds of contrast boundaries.

Methods

This experiment was conducted in the same manner as
Experiment 1 in almost every respect. However, rather
than randomly selecting textures on each trial, modulation
depth thresholds were measured in separate blocks for
each of twenty individual textures chosen to span a wide
range of appearances and represent a variety of scales,
materials, and environments. For each threshold measure-
ment, a single texture was used on every stimulus
presentation, so that modulation depth thresholds, and
therefore any difference between the intact and phase-
scrambled conditions, could be assessed separately for
each texture.

A modulation depth threshold was determined for each
texture in the intact and scrambled conditions. Data were
collected for three observers, two of whom (JH and AM)
were naive to the hypotheses of the experiment.

Results

The results from this experiment are shown in Figure 4,
where each symbol indicates the thresholds for the
scrambled versus the intact conditions for a particular
texture. The dashed line indicates the 1:1 ratio between
the two thresholds, which is where we would expect the
data to fall if there were no effect of phase scrambling.
The thresholds for all textures tested fall below the 1:1
line, indicating that the intact thresholds are higher than
the scrambled thresholds, in agreement with the results
from Experiment 1. On average, intact thresholds are
2.25 dB (SD = 0.84 dB) higher than scrambled thresholds
for observer LA, 2.48 dB (SD = 1.08 dB) higher for JH,
and 2.44 dB (SD = 1.29 dB) higher for AM. Overall,
thresholds for all subjects show a substantial, statistically
significant reduction after the carrier is phase scrambled:
LA, 1(19) = 8.46, p <0.05, d =2.00; AM, #19) =4.89, p <
0.05, d = 2.00; and JH, #(19) = 7.3, p < 0.05, d = 1.99.

From the scatter plots in Figure 4, it is apparent that
while thresholds for all textures are affected by phase
scrambling to some extent, some thresholds are reduced
substantially more than others. One contributing factor

Figure 4. Modulation depth threshold results from Experiment 2
for three observers. Each symbol plots the phase-scrambled
versus the intact threshold for a particular texture. In almost all
20 textures tested, for all three observers, the symbols lie below
the 1:1 line (dashed), indicating that the intact threshold is higher
than the phase-scrambled threshold. The amount of reduction,
or the distance from the 1:1 line, is texture dependent. Error
bars show the standard error on each measurement.
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appears to be the magnitude of the intact threshold;
textures with higher intact thresholds seem to show more
reduction than those with lower intact thresholds. A one-
tailed Spearman correlation shows a significant, positive
correlation between the intact threshold and the threshold

LA
32 Y.
16 P
A 1ol
@, 1S
8 Ve }%O%
s
4 8 16 32
. JH
X
=~ 32
o
o
<
) S/
o 5
- <
<
o 0 !
ko) 7 w o §
0o Hw%
E // N
© 8 ;
P Ve
&} g
%)
s 2
4 8 16 32
AM p
32 >
16 7
SO H o
S
4

4 8 16 32

Intact Threshold (%)



Journal of Vision (2011) 11(10):14, 1-15

=
I

Frequency

1 1.5 2 2.5

Arsenault, Yoonessi, & Baker Jr. 7

3 3.5 4

Average Magnitude of Phase-Scrambling Effect (dB)

Figure 5. Histogram of texture carriers used in Experiment 2, based on average magnitude of the effect of phase scrambling. The textures
that show a larger change (>2 dB) tend to have more prominent edges and appear to be more sparse.

reduction in decibels: LA, r(20) = 0.72, p < 0.05; AM,
r(20) = 0.60, p < 0.05; and JH, r(20) = 0.84, p < 0.05.
Thus, the textures that are more difficult on the segmentation
task are the ones that benefit most from phase scrambling.

To get an idea of what specific texture attributes might
contribute to the differing thresholds, we sorted the
textures into a histogram (Figure 5) based on the threshold
change for each texture averaged across the three
observers. The textures that have a small effect of phase
scrambling tend to be made up of densely packed, smaller
features or markings, while the textures that showed a
large effect of phase scrambling tend to be composed of
larger elements with longer continuous contours.

In the previous experiments, the textures were all equated
for RMS contrast, and this metric (like other low-order
image statistics) is preserved after phase scrambling.
Nevertheless, it is conceivable that our results could be
explained by systematic differences in detectability

between the intact and phase-scrambled texture conditions.
If the scrambled textures were easier to detect than their
intact counterparts, they might be at an advantage in the
contrast boundary segmentation task. Here, the same task
was undertaken as before on a representative subset of the
textures from Experiment 2 but using stimuli constructed
from textures at fixed contrast increments above their
individually measured detection thresholds.

Methods

In this experiment, two thresholds were determined in
separate blocks for each condition: first, the carrier contrast
threshold, and then the modulation depth threshold. As
before, “modulation depth” (m in Equation 1) refers to the
extent to which the envelope, in this case a contrast change,
is applied. “Carrier contrast” refers to the RMS contrast
level of the unmodulated carrier.

We measured carrier contrast thresholds using a method
of constant stimuli for each condition, texture, and
observer. Five logarithmically spaced carrier contrast levels
were tested at a modulation depth of 100% (Figure 6) using
the same left- or right-oblique segmentation task. Then, to
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Figure 6. Stimuli used to determine carrier contrast thresholds in
Experiment 3 shown at a range of carrier contrasts (top to bottom:
8, 5, and 3% RMS contrast), all with 100% modulation depth.
Thresholds were determined for (A) intact and (B) scrambled
textures.

compare modulation depth thresholds as directly as
possible, we presented the stimuli at 6 dB above each
observer’s carrier contrast threshold for that particular
texture. We tested eight natural textures from the previous
subset of twenty for this experiment. Carrier contrast and
then modulation depth thresholds were measured for two
observers, one of whom (JB) was naive to the purposes of
the experiment.

Results

The carrier contrast threshold results are shown in
Figure 7, where each symbol indicates the scrambled and
intact thresholds for a particular texture. The points fall
very close to the equality line, suggesting that there is no
systematic effect of phase scrambling on detectability. We
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found no statistically significant differences between the
carrier contrast thresholds of intact and scrambled textures
for either observer LA (#(7) = 0.412, p > 0.05) or JB (¢(7) =
2.038, p > 0.05). We also found relatively little variability
between textures; the axes illustrated in Figure 7 span a
range of only one octave, compared with a four-octave
range illustrated in Figure 4. This finding of very similar
detection thresholds for different RMS contrast-equated
textures, whether intact or scrambled, is consistent with
the report of Bex and Makous (2002) that RMS contrast
provides a good contrast metric for natural images.
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Figure 7. Carrier contrast threshold results from Experiment 3 for
two observers. Each symbol plots the phase-scrambled vs. the
intact threshold for a particular texture. The dashed line indicates
where a texture’s intact and phase-scrambled thresholds corre-
spond exactly. Carrier contrast thresholds are centered on the
1:1 line, suggesting no systematic change in detectability when a
texture is phase scrambled. Variation in thresholds between
observers, textures, and conditions is minimal.
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Figure 8. Modulation depth threshold results from Experiment 3
for two observers. Each symbol plots the phase-scrambled versus
the intact threshold for a particular texture, with each texture a
fixed increment above its detection threshold. The dashed line
indicates where a texture’s intact and phase-scrambled thresh-
olds correspond exactly. Modulation depth thresholds measured
with these detectability-equated contrasts are still systematically
lower for scrambled than for intact textures.

Modulation depth thresholds for the detectability-
equated intact and phase-scrambled textures are shown
in Figure 8. All points lie below the 1:1 line as in
Experiment 2, indicating that thresholds were again lowered
following phase scrambling. Comparing the average effect
of phase scrambling, we find that intact thresholds are
still 2.17 dB (SD = 0.83) higher than scrambled thresholds
for observer LA and 2.53 dB (SD = 1.28) higher for
observer JB. The difference between the thresholds in the
intact and phase-scrambled conditions remains statistically
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significant for both observers: LA (#(7) = 5.734, p < 0.05,
d = 259) and JB (#(7) = 4.326, p < 0.05, d = 2.11).
Furthermore, the large effect sizes (d) reported here are
similar to those found in Experiment 2, as are the average
changes in threshold, indicating that the effect observed in
Experiments 1 and 2 is not the result of differences in
effective RMS contrast for intact and phase-scrambled
textures.

In this study, we found that the presence of higher order
statistics impaired performance on a basic texture seg-
mentation task. In Experiment 1, we used an ensemble of
more than 200 natural texture photographs to show that it
is more difficult to segment contrast boundaries imposed
on intact textures than those imposed on phase-scrambled
textures. We extended this result in Experiment 2,
showing that this effect occurs in varying degrees for
different individual textures. Finally, in Experiment 3, we
showed that intact and scrambled textures are about
equally detectable and that scaling the carrier contrast to
the detection thresholds of individual textures and observ-
ers does not eliminate or even reduce the observed effect.
Based on these results, we cannot rule out the possibility
that some kinds of higher order statistics could contribute
positively to segmentation; we simply conclude that
whatever help some statistics might contribute, they do
not overcome the impairment imposed by other statistics.

Our finding that higher order information impairs
performance runs contrary to what has been found in
many non-segmentation tasks such as texture discrim-
ination (Phillips & Todd, 2010), spectral slope discrim-
ination (Thomson & Foster, 1997), and scene recognition
(Hansen & Hess, 2007), where higher order statistics
improve performance. However, higher order statistics
have previously been found to impair the detection of
distortions in natural scenes (Bex, 2010). As in the work
described here, other studies have found that perception
depends on more than simply the presence or absence of
higher order statistics; it depends on some statistics more
than others, and the degree of their importance varies from
image to image for reasons that are not entirely clear
(Bex, Solomon, & Dakin, 2009; Hansen & Hess, 2007,
Phillips & Todd, 2010).

In the past, different investigators have considered
various kinds of “higher order” statistics—excellent
reviews can be found in Kingdom et al. (2001) and Landy
and Graham (2004). Julesz et al. (1978) emphasized the
importance of considering higher order statistics in
segmentation models, but their use of the term is not
congruent with the more conventional Fourier-based
statistics that we employed in this study. By controlling
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nth-order correlations, one can create images with
identical autocorrelation functions and, therefore, identical
Fourier amplitude spectra in an ensemble average (Julesz,
1962; Julesz et al., 1978; Victor, Chubb, & Conte, 2005).
The Julesz constraint that ensures that second-order correla-
tions are identical does not preclude individual samples
of these populations from differing in their second-order
statistics (Chubb & Yellott, 2000; Yellott, 1993). Though
Victor (1994) argued that texture statistics, by nature,
characterize a population rather than individual samples,
segmentation mechanisms have access to only a pair of
samples at any given moment and so sample statistics
cannot be ignored. Furthermore, these statistics are
difficult to examine in the context of the linear filtering
models that are prevalent in modern vision theory,
because the Julesz statistics are not maintained following
linear filtering (Klein & Tyler, 1986).

Which higher order statistics impair
segmentation?

What image statistics might be at the root of our results
remains unclear. In the histogram of our stimuli (Figure 5),
there is a strong visual impression of a difference in
structural appearance between the textures whose thresh-
olds are least affected by phase scrambling (left side) and
those most affected by phase scrambling (right side).
Some specific apparent differences are relative amounts of
high and low spatial frequency information, structural
sparseness, and local edge structure, which we will now
consider.

Spectral slope. While we find an effect of higher order
statistics on segmentation, the magnitude of the threshold
change could be associated with individual differences in
the amplitude spectra of the textures. It appears as though
the textures whose thresholds are most affected by phase
scrambling might have relatively less energy in the high
spatial frequencies and proportionately more energy at
lower frequencies. This difference in the proportions of
low and high spatial frequency information could have an
impact on segmentation mechanisms. To assess the
relative amounts of high and low spatial frequencies in
our stimuli, we measured their spectral slopes by fitting a
linear regression to the log—log plot of Fourier amplitude
vs. spatial frequency (Bex & Makous, 2002; Thomson &
Foster, 1997) for each texture—steeper negative slopes
would indicate relatively more energy in the high spatial
frequencies. The results are plotted in Figure 9A as a
function of the change in threshold between intact and
scrambled conditions—note that most of the spectral
slopes were close to —1, as expected for natural images
(Field, 1987; Ruderman, 1997). There does not appear to
be any relationship between threshold change and spectral
slope, and a Pearson correlation on these variables failed
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to find any significant correlation (r(20) = —0.39, p >
0.05). This lack of relationship suggests that an explan-
ation of our results based on relative differences in high
vs. low spatial frequencies is unlikely.

Sparseness. Colloquially, structural sparseness can be
defined in terms of the amount of “stuff” that appears to
be in a texture (Adelson, 2001). A collection of 50 leaves
seen close up can be considered a “sparse” texture, while
a field of millions of blades of grass seen from a distance
appears less sparse. Textures that have been phase
scrambled do not appear sparse because there are no local
concentrations of energy (e.g., small edges or other
texture markings) and complementary regions of blank
space forming discrete objects. Upon phase scrambling,
the pixel and wavelet distributions become normal (Bex &
Makous, 2002) rather than the kurtotic distribution that is
a signature of sparseness (Kingdom et al., 2001). Sparse-
ness is well known as a key attribute of natural scenes
(Field, 1998; Ruderman, 1997), but it is also a primary
property of textures. Victor and Conte (1996) proposed
“granularity” as an important higher order distinction
between textures, which they investigated using textures
formed with a range of element sizes. Computer science
and image statistical methods have described “coarseness”
as a major dimension along which textures vary (Rubner &
Tomasi, 1998). Durgin (1995, 2008) showed that density
is a primitive texture feature for which adaptation effects
can be measured, and Kingdom et al. (2001) demonstrated
that textures can be discriminated based on sparseness.
However, none of these previous efforts examined the
impact of sparseness on boundary segmentation.

To measure sparseness, Kingdom et al. (2001) sug-
gested intensity histogram or wavelet-based kurtosis, and
Hansen and Hess (2007) developed a wavelet-based
measure of kurtosis, the LSSM, to assess the sparseness
of natural images. We computed these metrics for each
texture and plotted them against the textures’ change in
threshold (Figures 9B and 9C)—in both cases, there is no
systematic relationship, as confirmed by the lack of
significant correlation between threshold change and
either pixel kurtosis (r(20) = —0.15, p > 0.05) or LSSM
(r(20) = —0.07, p > 0.05). These results suggest either that
sparseness is not a relevant higher order statistic or that
the sparseness metrics we employed are not sufficiently
sensitive to sparseness. Note that textures appear rela-
tively dense compared to images of scenes, and it may be
that these sparseness metrics perform less well in this
context.

Edge structure. It might not be the global arrangement
of the energy (sparseness) that determines the difference
in the thresholds but the varying density of broadband
features within the image (local edge structures). The
textures that were more affected by phase scrambling
(Figure 5, right) appear to have more prominent local
edges. We assessed the amount of local edge structure
using a modified version of the method for computing
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Figure 9. Relationship between image statistic indices and the change in segmentation threshold between intact and scrambled
conditions in decibels. (A) Slope of falloff of Fourier spectrum. (B) Sparseness, as measured using intensity histogram kurtosis.
(C) Sparseness, as measured with the LSSM metric of Hansen and Hess (2007)—a wavelet-based metric developed for natural scenes.
(D) Edge density, modified from Bex (2010). Note the lack of relationship between threshold change and kurtosis, LSSM, or slope but a

clear correlation between edge density and threshold change.

edge density outlined in Bex (2010). We integrated a
Canny edge map (constructed using Matlab’s canny edge
detector) and normalized by the number of pixels in the
texture to obtain an index of edge density. In a plot of this
edge density index against the textures’ change in threshold
(Figure 9D), we can see a systematic relationship: The
textures with greatest effect of phase scrambling had
higher edge density indices, while those with least effect
had lower edge densities. This relationship was confirmed
by a significant correlation between this rough measure of
edge density and threshold change ((20) = —0.80, p <
0.05), suggesting that some aspect of both broadband
edges and the density in which they occur may impact the
effect of higher order image statistics on segmentation
performance. However, this result is also consistent with a
role for sparseness, since sparser textures would produce
smaller indices of edge density. Untangling these factors
may be problematic with natural texture photographs, but
using synthetic textures, where both sparseness and local
edge structure can be controlled, is a clear way forward.

Higher order statistics impair segmentation
performance

Why the presence of higher order statistics might impair
the segmentation of contrast boundaries is an open
question.

Camouflage or masking. It could be the case that
luminance-defined contours in intact textures camouflage
the target boundary—however, luminance noise has little
impact on contrast boundary segmentation (Allard &
Faubert, 2007), so we do not expect this to influence our
results. Aside from luminance variation, sparse images
contain low- and high-contrast regions, and this spatial
modulation of contrast could mask the modulation that
observers are tasked with identifying (Allard & Faubert,
2007). We consider this unlikely for three reasons: (1) the
observer knows that the edge will be in one of two
positions, so there is very little positional uncertainty;
(2) the textures are randomly flipped from trial to trial, so
any texture features that happen to appear along the
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envelope boundary will only affect some (25%) of the
trials; and (3) second-order masking is spatial frequency
dependent (Hutchinson & Ledgeway, 2004), which sug-
gests that such high spatial frequency contrast noise
should not affect performance on our low spatial fre-
quency boundary. Low spatial frequency contrast noise
should not present a problem because we specifically
excluded textures that were too coarse or had large-scale
contrast gradients. However, the precise bandwidths of the
noise, boundary, and second-order mechanisms are ill-
defined, so while it seems unlikely we cannot rule out the
possibility that second-order masking plays a role in
determining our results.

Subjective texture selection. One might argue that
including those textures we excluded based on their
subjective characteristics could somehow reduce or nullify
the observed effect of phase scrambling. Because we find
a strong correlation between threshold and Canny edge
density, we performed the analysis of Figure 9D on the
49 textures excluded in the subjective stage of texture
screening. We found that they have systematically lower
edge density (M = 0.060, SD = 0.02) than the 20 we tested
in Experiment 2 (M = 0.095, SD = 0.03), and thus, their
inclusion would, in fact, have been more likely to increase
the size of the effect we observe.

Edge vs. region processing. Finally, it may be that
phase-scrambled and dense images provide more support
along the contrast boundary itself and so are easiest to
segment. This explanation supposes that the mechanism
responsible for segmentation preferentially uses informa-
tion near the texture boundary (an edge-based process)
rather than integrating information throughout the entire
stimulus (a region-based process). This is possible but is a
departure from the common conception of texture seg-
mentation mechanisms as two-stage filter models with
large second-stage filters that can operate across the entire
region. In the context of this model, a strong reliance on
edge support would be surprising, particularly for contrast
modulations.

The regional summation in the second stage of a
standard energy model is not explicitly selective for the
local features encoded in higher order statistics, but there
are various ways to adapt this model to enable such
selectivity. The simplest modification of a standard FRF
model would entail changing the non-linear function
separating the first- and second-stage filters. Graham and
Sutter (1998) found that an expansive power-law non-
linearity with an exponent between 3 and 4 better
accounted for their findings with element arrangement
patterns. By using a non-linearity that is more expansive
than a square law, textures with localized areas of high
energy (such as sparse natural images) would give a
greater response. A more serious modification to the FRF
scheme would be to use first-stage filters that act like non-
linear ‘““feature detectors”—for example, Martin et al.
(2004) used histograms of different types of local features,
defined by the co-localizations of wavelet responses,
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to segment texture boundaries. Finally, one might add an
additional non-linear process beyond the second stage.
Graham et al. (1993) argued that an additional stage of a
filter—rectify cascade (i.e., Filter—Rectify—Filter—Rectify—
Filter rather than FRF) was necessary to segment some
element arrangement patterns that differed only in their
higher order statistics.

Conclusion

We have shown that texture segmentation mechanisms
are sensitive to the information in the phase spectrum of
an image. From these findings, we cannot be certain which
specific statistics contribute, but it appears as though
sparseness and local edge structure in particular might be
relevant statistics in this task. To address these issues, we
intend to use synthetic stimuli to isolate these specific
higher order statistics and to gauge their impact on
segmentation independently. It is not yet clear whether
current models of texture segmentation account for how
humans process higher order statistics, but testing and
modifying those models may prove to be informative. A
detailed examination of the effects of higher order
statistics as an ensemble and as individual exemplars
(e.g., sparseness) on segmentation will be useful for
refining models to the point where we can begin to apply
them to biologically relevant stimuli. We can conclude that
while textures are segmented using a limited subset of the
information they contain, this subset must be expanded to
include higher order statistics in some capacity.

Acknowledgments

The authors would like to thank Fred Kingdom and
Aaron Johnson for helpful discussions and suggestions,
Bruce Hansen for sharing his LSSM code, their reviewers for
their constructive comments, and their subjects. This work
was supported by an NSERC Grant OPG0001978 to CB.

Commercial relationships: none.

Corresponding author: Elizabeth Arsenault.

Email: elizabeth.arsenault@mail.mcgill.ca.

Address: Royal Victoria Hospital, Room H4.14, 687 Pine
Avenue West, Montreal, Quebec H3A 1A1, Canada.

References

Adelson, E. H. (2001). On seeing stuff: The perception of
materials by humans and machines. Proceedings of
the SPIE, 4299, 1-12. [Article]


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.1517&rep=rep1&type=pdf

Journal of Vision (2011) 11(10):14, 1-15

Allard, R., & Faubert, J. (2007). Double dissociation
between first- and second-order processing. Vision
Research, 47, 1129-1141. [PubMed]

Alvarez, G. A., & Oliva, A. (2008). The representation of
simple ensemble visual features outside the focus of
attention. Psychological Science, 19, 392-398.
[PubMed] [Article]

Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011).
Contour detection and hierarchical image segmenta-
tion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33, 896-916. [PubMed]
[Article]

Ariely, D. (2001). Seeing sets: Representation by statistical
properties. Psychological Science, 12, 157-162.
[PubMed] [Article]

Balas, B., Nakano, L., & Rosenholtz, R. (2009). A
summary-statistic representation in peripheral vision
explains visual crowding. Journal of Vision, 9(12):13,
1-18, http://www.journalofvision.org/content/9/12/13,
doi:10.1167/9.12.13. [PubMed] [Article]

Balas, B. J. (2006). Texture synthesis and perception:
Using computational models to study texture repre-
sentations in the human visual system. Vision
Research, 46, 299-309. [PubMed] [Article]

Beck, J. (1966). Effect of orientation and of shape
similarity on perceptual grouping. Attention, Percep-
tion & Psychophysics, 1, 300-302.

Bergen, J. R. (1991). Theories of visual texture perception.
In D. Regan (Ed.), Vision and visual dysfunction
(vol. 10B, pp. 114-134). New York: Macmillan Press.

Bergen, J. R., & Adelson, E. H. (1988). Early vision and
texture perception. Nature, 333, 363-364. [Article]

Bergen, J. R., & Julesz, B. (1983). Parallel versus serial
processing in rapid pattern discrimination. Nature,
303, 696-698. [PubMed] [Article]

Bex, P. J. (2010). (In) Sensitivity to spatial distortion in
natural scenes. Journal of Vision, 10(2):23, 1-15,
http://www.journalofvision.org/content/10/2/23,
doi:10.1167/10.2.23. [PubMed] [Article]

Bex, P. J., & Makous, W. (2002). Spatial frequency,
phase, and the contrast of natural images. Journal of
the Optical Society of America A, 19, 1096-1106.
[PubMed] [Article]

Bex, P. J., Solomon, S. G., Dakin, S. C. (2009). Contrast
sensitivity in natural scenes depends on edge as well as
spatial frequency structure. Journal of Vision, 9(10):1,
1-19, http://www.journalofvision.org/content/9/10/1,
doi:10.1167/9.10.1. [PubMed] [Article]

Brainard, D. H. (1997). The psychophysics toolbox.
Spatial Vision, 10, 433-436. [Article]

Chong, S. C., & Treisman, A. (2003). Representation of
statistical properties. Vision Research, 43, 393-404.
[PubMed] [Article]

Arsenault, Yoonessi, & Baker Jr. 13

Chubb, C., & Yellott, J. L., Jr. (2000). Every discrete,
finite image is uniquely determined by its dipole
histogram. Vision Research, 40, 485-492. [PubMed]

Dakin, S. C., Hess, R. F., Ledgeway, T., & Achtman,
R. L. (2002). What causes non-monotonic tuning of
fMRI response to noisy images? Current Biology,
12, R476-R477. [PubMed] [Article]

Dakin, S. C., & Mareschal, 1. (2000). Sensitivity to contrast
modulation depends on carrier spatial frequency and
orientation. Vision Research, 40, 311-329. [PubMed]
[Article]

Durgin, F. H. (1995). Texture density adaptation and the
perceived numerosity and density of texture. Journal
of Experimental Psychology: Human Perception and
Performance, 21, 149-169. [Article]

Durgin, F. H. (2008). Texture density adaptation and visual
number revisited. Current Biology, 18, R855-R856.
[PubMed]

Emrith, K., Chantler, M. J., Green, P. R., Maloney, L. T.,
& Clarke, A. D. F. (2010). Measuring perceived
differences in surface texture due to changes in
higher-order statistics. Journal of the Optical Society
of America A, 27, 1232-1244. [PubMed] [Article]

Field, D. J. (1987). Relations between the statistics of
natural images and the response properties of cortical
cells. Journal of the Optical Society of America A, 4,
2379-2394. [PubMed] [Article]

Field, D. J. (1998). Visual coding, redundancy, and
“feature detection”. In M. A. Arbib (Ed.), The
handbook of brain theory and neural networks
(pp. 1012-1016). Cambridge, MA: MIT Press.

Graham, N., & Sutter, A. (1998). Spatial summation in
simple (Fourier) and complex (non-Fourier) texture
channels. Vision Research, 38, 231-257. [PubMed]

Graham, N., Sutter, A., & Venkatesan, C. (1993). Spatial-
frequency- and orientation-selectivity of simple and
complex channels in region segregation. Vision
Research, 33, 1893—-1911. [PubMed] [Article]

Hansen, B. C., & Hess, R. F. (2007). Structural sparseness
and spatial phase alignment in natural scenes. Journal
of the Optical Society of America A, 24, 1873-1885.
[PubMed] [Article]

Hutchinson, C. V., & Ledgeway, T. (2004). Spatial
frequency selective masking of first-order and second-
order motion in the absence of off-frequency ‘looking’.
Vision Research, 44, 1499—-1510. [PubMed]

Johnson, A. P., & Baker, C. L., Jr. (2004). First- and
second-order information in natural images: A filter-
based approach to image statistics. Journal of the
Optical Society of America A, 21, 913-925. [PubMed]

Julesz, B. (1962). Visual pattern discrimination. /RE
Transactions on Information Theory, IT-8, 84-92.


http://www.ncbi.nlm.nih.gov/pubmed/17363024/
http://www.ncbi.nlm.nih.gov/pubmed/18399893/
http://visionlab.harvard.edu/Members/George/Publications_files/Alvarez-Oliva-2008-PsychSci.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20733228
http://www.cs.berkeley.edu/~malik/papers/arbelaezMFM-pami2010.pdf
http://www.ncbi.nlm.nih.gov/pubmed/11340926
http://www.jstor.org/stable/40063604
http://www.ncbi.nlm.nih.gov/pubmed/20053104
http://www.journalofvision.org/content/9/12/13
http://www.ncbi.nlm.nih.gov/pubmed/15964047/
http://cvcl.mit.edu/SUNSeminar/Balas_texture_VR06.pdf
http://cvcl.mit.edu/SUNSeminar/BergenAdelson_earlyvision_Nat88.pdf
http://www.ncbi.nlm.nih.gov/pubmed/6855915
http://cvcl.mit.edu/SUNSeminar/bergen_julesz_Nature83.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20462324
http://www.journalofvision.org/content/10/2/23
http://www.ncbi.nlm.nih.gov/pubmed/12049346
http://www.bcs.rochester.edu/people/walt/publications/bex2002.pdf
http://www.ncbi.nlm.nih.gov/pubmed/19810782
http://www.journalofvision.org/content/9/10/1
http://www.bioguider.com/uploadfiles/2006-4/200641014551689.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12535996
http://psy.fgu.edu.tw/web/app/doc/Chong_Treisman_03.pdf
http://www.ncbi.nlm.nih.gov/pubmed/10820607
http://www.ncbi.nlm.nih.gov/pubmed/12176342/
http://www.dakinlab.org/DakinLab/Papers_files/2002%20Non-monotonic%20fMRI.pdf
http://www.ncbi.nlm.nih.gov/pubmed/10793904
http://www.dakinlab.org/DakinLab/Papers_files/2000%20ContrastMod.pdf
http://www.swarthmore.edu/SocSci/fdurgin1/publications/Durgin1995TDAE.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18812077
http://www.ncbi.nlm.nih.gov/pubmed/20448792/
http://www.macs.hw.ac.uk/texturelab/files/publications/papers/Papers_PDF/Emrith2010.pdf
http://www.ncbi.nlm.nih.gov/pubmed/3430225/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.1345&rep=rep1&type=pdf
http://www.ncbi.nlm.nih.gov/pubmed/9536351
http://www.ncbi.nlm.nih.gov/pubmed/8249309
http://www.columbia.edu/~nvg1/normster_pdfs/1993GrahamSuttVenkatesan.pdf
http://www.ncbi.nlm.nih.gov/pubmed/17728809/
http://mvr.mcgill.ca/Robert/PDF-07/Hansen07JOSA24_1873.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15126061
http://www.ncbi.nlm.nih.gov/pubmed/15191171

Journal of Vision (2011) 11(10):14, 1-15

Julesz, B. (1981). Textons, the eclements of texture
perception, and their interactions. Nature, 290, 91-97.
[PubMed]

Julesz, B., Gilbert, E. N., & Victor, J. D. (1978). Visual
discrimination of textures with identical third-order
statistics. Biological Cybernetics, 31, 137-140.
[PubMed] [Article]

Kingdom, F. A. A., Hayes, A., & Field, D. J. (2001).
Sensitivity to contrast histogram differences in syn-
thetic wavelet textures. Vision Research, 41, 585-598.
[Article]

Klein, S. A., & Tyler, C. W. (1986). Phase discrimination
of compound gratings: Generalized autocorrelation
analysis. Journal of the Optical Society of America A,
3, 868-878. [PubMed] [Article]

Kline, R. B. (2005). Beyond significance testing: Reform-
ing data analysis methods in behavioral research.
Washington, DC: American Psychological Association.

Landy, M. S., & Graham, N. (2004). Visual perception of
texture. In L. M. Chalupa & J. S. Werner (Eds.), The
visual neurosciences (pp. 1106-1118). Cambridge,
MA: MIT Press.

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004).
Learning to detect natural image boundaries using
local brightness, color, and texture cues. IEEE Trans-

actions on Pattern Analysis and Machine Intelli-
gence, 530-549. [PubMed] [Article]

Motoyoshi, 1., & Kingdom, F. A. A. (2010). The role of
co-circularity of local elements in texture percep-
tion. Journal of Vision, 10(1):3, 1-8, http://www.
journalofvision.org/content/10/1/3, doi:10.1167/10.1.3.
[PubMed] [Article]

Oliva, A., & Torralba, A. (2001). Modeling the shape of
the scene: A holistic representation of the spatial
envelope. International Journal of Computer Vision,
42, 145-175. [Article]

Oliva, A., & Torralba, A. (2007). The role of context in
object recognition. Trends in Cognitive Sciences, 11,
520-527. [PubMed] [Article]

Olshausen, B. A., & Field, D. J. (1996). Natural image
statistics and efficient coding. Network: Computation
in Neural Systems, 7, 333-339. [PubMed] [Article]

Olson, R. K., & Attneave, F. (1970). What variables
produce similarity grouping? American Journal of
Psychology, 81, 1-21. [Article]

Oppenheim, A. V., & Lim, J. S. (1981). The importance
of phase in signals. Proceedings of the IEEE, 69,
529-541.

Pelli, D. G. (1997). The VideoToolbox software for visual
psychophysics: Transforming numbers into movies.
Spatial Vision, 10, 437-442. [PubMed]

Arsenault, Yoonessi, & Baker Jr. 14

Phillips, F., & Todd, J. T. (2010). Texture discrimination
based on global feature alignments. Journal of Vision,
10(6):6, 1-14, http://www journalofvision.org/content/
10/6/6, doi:10.1167/10.6.6. [PubMed] [Article]

Piotrowski, L. N., & Campbell, F. W. (1982). A
demonstration of the visual importance and flexibility
of spatial-frequency amplitude and phase. Perception,
11, 337-346. [PubMed]

Portilla, J., & Simoncelli, E. P. (2000). A parametric
texture model based on joint statistics of complex
wavelet coefficients. International Journal of Com-
puter Vision, 40, 49-71. [Article]

Rosenholtz, R. (2011). What your visual system sees
where you are not looking. In B. E. Rogowitz &
T. N. Pappas (Eds.), Proceedings of SPIE: Human
vision and Electronic Imaging XVI. San Francisco.
[Article]

Rubner, Y., & Tomasi, C. (1998). Texture metrics.
Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics, 5, 4601-4607.
[Article]

Ruderman, D. L. (1997). Origins of scaling in natural
images. Vision Research, 37, 3385-3398. [Article]

Schofield, A. J., & Georgeson, M. A. (1999). Sensitivity
to modulations of luminance and contrast in visual
white noise: Separate mechanisms with similar
behaviour. Vision Research, 39, 2697-2716.
[PubMed]

Schofield, A. J., & Georgeson, M. A. (2003). Sensitivity
to contrast modulation: The spatial frequency depend-
ence of second-order vision. Vision Research, 43,
243-259. [PubMed]

Sutter, A., Sperling, G., & Chubb, C. (1995). Measuring
the spatial frequency selectivity of second-order
texture mechanisms. Vision Research, 35, 915-924.
[PubMed]

Tadmor, Y., & Tolhurst, D. J. (1993). Both the phase and
amplitude spectrum may determine the appearance of
natural images. Vision Research, 33, 141-145.
[PubMed]

Thomson, M. G. A. (1999). Visual coding and the phase
structure of natural scenes. Network: Computation in
Neural Systems, 10, 123—132. [PubMed]

Thomson, M. G. A., & Foster, G. H. (1997). Role of
second- and third-order statistics in the discrimina-
bility of natural images. Journal of the Optical
Society of America A, 14, 2081-2090. [Article]

Victor, J. D. (1994). Images, statistics, and textures:
Implications of triple correlation uniqueness for
texture statistics and the Julesz conjecture: Comment.
aA, 11, 1680-1684. [Article]

Victor, J. D., Chubb, C., & Conte, M. M. (2005).
Interaction of luminance and higher-order statistics


http://www.ncbi.nlm.nih.gov/pubmed/7207603
http://www.ncbi.nlm.nih.gov/pubmed/728493
http://www-users.med.cornell.edu/~jdvicto/pdfs/jugivi78.pdf
http://redwood.psych.cornell.edu/papers/kingdom_hayes_field_2001.pdf
http://www.ncbi.nlm.nih.gov/pubmed/3734926/
http://cornea.berkeley.edu/pubs/37.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15460277/
http://www.cs.virginia.edu/~gfx/courses/2007/ComputerVision/papers/martin.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21216761
http://www.journalofvision.org/content/10/1/3
http://people.csail.mit.edu/torralba/courses/6.870/papers/IJCV01-Oliva-Torralba.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18024143/
http://cvcl.mit.edu/Papers/OlivaTorralbaTICS2007.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16754394
http://slimjim.cs.unm.edu/~williams/cs591/olshausen96.pdf
http://www.jstor.org/stable/1420852
http://www.ncbi.nlm.nih.gov/pubmed/9176953
http://www.ncbi.nlm.nih.gov/pubmed/20884555
http://www.journalofvision.org/content/10/6/6
http://www.ncbi.nlm.nih.gov/pubmed/7167342/
http://cvcl.mit.edu/seminarfall05/articles/PortillaSimoncelli-IJCV00.pdf
http://web.mit.edu/rruth/www/Papers/RosenholtzSPIE2011.pdf
http://ftp.cs.duke.edu/~tomasi/papers/rubner/rubnerSmc98.pdf
http://www.stat.ucla.edu/~sczhu/Courses/UCLA/Stat_232A/papers/Ruderman_Stat_Nat_image.pdf
http://www.ncbi.nlm.nih.gov/pubmed/10492831/
http://www.ncbi.nlm.nih.gov/pubmed/12535984
http://www.ncbi.nlm.nih.gov/pubmed/7762149
http://www.ncbi.nlm.nih.gov/pubmed/8451839
http://www.ncbi.nlm.nih.gov/pubmed/10378188/
http://personalpages.manchester.ac.uk/staff/david.foster/Research/My_PDFs/Thomson_Foster_JOSAA_97.pdf
http://www-users.med.cornell.edu/~jdvicto/pdfs/vict94.pdf

Journal of Vision (2011) 11(10):14, 1-15 Arsenault, Yoonessi, & Baker Jr. 15

in texture discrimination. Vision Research, 45, 311-328. Wilkinson, F., & Wilson, H. R. (1998). Measurement of

[PubMed] [Article] the texture-coherence limit for bandpass arrays.
Victor, J. D., & Conte, M. M. (1996). The role of high- Perception, T11-728. [PubMed] [Article]

order phase correlations in texture processing. Vision Yellott, J. 1., Jr. (1993). Implications of triple correlation

Research, 36, 1615-1631. [PubMed] [Article] uniqueness for texture statistics and the Julesz conjec-
Wilkinson, F. (1990). Texture segmentation. In W. C. ture. Journal of the Optical Society of America A, 10,

Stebbins & M. A. Berkley (Eds.), Comparative TT7-193.

perception (pp. 125-156). New York: John Wiley.


http://www.ncbi.nlm.nih.gov/pubmed/15607348/
http://www-users.med.cornell.edu/~jdvicto/pdfs/vichco04.pdf
http://www.ncbi.nlm.nih.gov/pubmed/8759463
http://www-users.med.cornell.edu/~jdvicto/pdfs/vico96.pdf
http://www.ncbi.nlm.nih.gov/pubmed/10197188
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.8753&rep=rep1&type=pdf

