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Simultaneous density contrast, or SDC, is the phenomenon
in which the perceived density of a textured region is
altered by a surround of different density (Mackay, 1973).
SDC provides an experimental tool to investigate
mechanisms of density coding, yet has not been
systematically examined. We measured SDC with a 2AFC
staircase procedure in which human observers judged
which of two patterns, one with and one without a
surround, appeared more dense. We used a range of
surround densities varying from very sparse to very dense
(0–76.8 dots/deg2), and two center test densities (6.4 and
12.8 dots/deg2). Psychometric functions were used to
estimate both the points of subjective equality (PSE) and
their precision. Unexpectedly we find a bidirectional SDC
effect across the five observers: Not only does a denser
surround reduce perceived density of the center, but a
sparser surround enhances its perceived density. We also
show that SDC is not mediated by either contrast-contrast
or spatial-frequency contrast. Our results suggest the
presence of multiple channels selective for texture density,
with lateral inhibitory interactions between them.

Introduction

Textures contain information about surface prop-
erties and object boundaries. Textures can vary in
many dimensions, including their Fourier spectra
(Bergen & Landy, 1991) and higher-order texture
statistics (Julesz, 1981; Portilla & Simoncelli, 2000),
and the functional roles and neuronal encoding of
these different kinds of variations are still only
partially understood. One such texture property is the
density or numerosity of texture markings, which we
will here refer to as texture density. Texture density
can have a salient effect on surface appearance, and
can be important for the identification and discrimi-

nation of surfaces or objects (e.g., slant and shape
from texture; Cutting & Millard, 1984; Todd &
Thaler, 2010). Moreover, texture density can affect the
ability to segment textures, and changes in it can
enable segmentation (Zavitz & Baker, 2013, 2014). In
addition, texture density (in our generalized sense of
the word) is relevant for mediating numerosity
judgements, since number ¼ density 3 area (e.g.,
Dakin, Tibber, Greenwood, Kingdom, & Morgan,
2011; Morgan, Raphael, Tibber, & Dakin, 2014;
Raphael & Morgan, 2015; Tibber, Greenwood, &
Dakin, 2012). Texture density is a separately adapt-
able feature, suggesting that there exist neuronal
mechanisms for its encoding (Durgin, 1995, 2001;
Durgin & Hammer, 2001; Durgin & Huk, 1997;
Durgin & Proffit, 1996).

Most studies that have investigated texture density
(henceforth ‘‘density’’) have employed adaptation
(Durgin, 1995, 1996; Durgin & Proffit, 1991, 1996), and
some of these studies have demonstrated that density
coding is distinct from contrast and spatial frequency
coding (Durgin, 2001; Durgin & Hammer, 2001; Durgin
& Huk, 1997). These studies have also suggested that
adaptation only ever reduces perceived density: Denser
adaptors reduce perceived density, yet sparser adaptors
have not been found to enhance perceived density. In
other words the density aftereffect is apparently
unidirectional, implying that density information is
coded as a scalar, as with contrast (Durgin & Huk,
1997). However, the aforementioned studies have only
investigated a limited range of adaptor densities, and do
not rule out the possibility that the density aftereffect
might be bidirectional, i.e., that adaptation could both
increase as well as decrease perceived density.

An alternative approach for studying how visual
attributes are encoded is to investigate spatial as
opposed to temporal contrast, specifically how the
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perception of a visual attribute is altered by a surround
with a different level of that dimension. Such ‘‘simul-
taneous contrast’’ effects have been demonstrated, for
example, with luminance (Heinemann, 1955), contrast
(Chubb, Sperling, & Solomon, 1989; Georgeson, 1985),
spatial frequency (Klein, Stromeyer, & Ganz, 1974),
orientation (Blakemore, Carpenter, & Georgeson,
1970; Clifford, 2014), and object size (Roberts, Harris,
& Yates, 2005). Mackay (1973) reported an effect of
simultaneous density contrast, or SDC, in noise texture
patterns, but his study unfortunately conflated density
with spatial frequency. More recently Durgin and
Proffit (1991) provided a demonstration of SDC using
dot textures (see demonstration in Figure 1A). How-
ever, to our knowledge there have been no quantitative
measurements of SDC, particularly with a systematic
manipulation of center and surround densities. In this
study we aimed to further our understanding of density
processing by using a 2AFC task to measure SDC as a
function of the relative densities of center and
surround. We present dot textures in a center–surround
configuration and measure the perceived density of the
central region while varying surround densities over a
wide range, from very sparse to highly dense. We were
particularly interested to see if SDC is separable from
contrast and spatial-frequency contrast effects, and to
determine whether it is coded as a scalar property, as
suggested previously.

Materials and methods

Apparatus and stimuli

Stimuli were presented on a CRT monitor (Sony
Trinitron GDM-F520, 20 inch, 1600 3 1200 pixels, 85
Hz, Sony Corp., Tokyo, Japan) at a viewing distance of
57 cm. Luminance was measured with an Optikon
universal photometer (Optikon Corp. Ltd., Ontario,
Canada), and linearized using Mcalibrator2 (Ban &
Yamamoto, 2013). Stimuli were generated and pre-
sented using custom code in Matlab with the Psycho-
physics Toolbox (Brainard, 1997; Kleiner, Brainard, &
Pelli, 2007; Pelli, 1997). Stimulus textures consisted of
quasi-randomly placed dots (0.128), with a constraint
on dot placements to prevent overlap. This was
achieved by setting the minimum interdot distance to
be negatively proportional to density, specifically equal
to 1.68 3 (density 3 0.167)^(�0.5). This holds constant
what Durgin (1995) refers to as the ‘‘ratio of regularity’’
(RoR), preventing the occurrence in the relatively
sparse displays of dot clusters and blank areas that
might influence SDC.

Half of the dots were black (7 cd/m2) and the
remainder white (115 cd/m2), all on a mid-gray

background (61 cd/m2), giving a Michelson contrast of
88.5%. Each dot texture pattern was presented in a
circular center–surround arrangement, such that the
diameter of the center area was 4.358, and the surround
diameter was six times larger (26.098).

Two kinds of stimuli were presented in successive
temporal intervals of each trial: a match and a test. The
match covered the center area only, whereas the test
contained textures covering both center and surround
areas. A set of many possible match stimuli was
generated and stored prior to the experiments, ranging
across 140 logarithmically spaced density levels, from
very sparse (0.13 dots/deg2) to very dense (51.2 dots/
deg2). The match stimulus for each trial was selected
from the 140 levels based on a staircase procedure. The
center of the test stimulus was set at either of two
density levels (6.4 dots/deg2 and 12.8 dots/deg2), and at
one of eight relative surround density levels: test center
density 3 0 (‘‘no-surround’’ baseline), 1/216, 1/36, 1/6,
1, 2, 4, or 6, i.e., a total of 16 possible density levels for
the surround. The absolute densities for the surround
conditions were 0, 0.03, 0.18, 1.07, 6.4, 12.8, 25.6 and
38.4 dots/deg2, for the test center density of 6.4 dots/
deg2. For the test center density of 12.8 dots/deg2, the
densities of the surrounds were 0, 0.06, 0.36, 2.13, 12.8,
25.6, 51.2, and 76.8 dots/deg2. Examples of test stimuli,
all with a center density of 6.4 dots/deg2, are depicted in
Figure 1 for three conditions, having a relative
surround density 31/6 that of the center (Figure 1B), a
relative surround density 34 that of the center (Figure
1C), and a blank surround (‘‘30,’’ Figure 1D).

Note that there are different ways to define contrast.
Michelson contrast is defined by the maximum and
minimum luminances, i.e., (Lmax� Lmin) / (Lmax þ
Lmin); RMS contrast by pixelwise root-mean-square
values. Here we used Michelson contrast to describe the
luminance difference between the black and white dots
(peak-to-peak contrast), which was kept constant
(88.5%) across density levels in the main conditions
described already. However, changes in density will
result in corresponding changes in RMS texture
contrast. To test for the confounding effects of RMS
contrast, we used the highest relative surround density
level (i.e., 36) of the two test center densities to create,
for each, four logarithmically spaced Michelson con-
trast levels (5.53%, 11.06% 22.13%, 44.25%), which
corresponded to the RMS contrasts of the four relative
density levels of 0.02, 0.09, 0.37, and 1.49. Together
with the original relative surround30 density condition
(i.e., 0% Michelson contrast) and 36 density condition
(which has 88.5% Michelson contrast as with all the
other main conditions), there were six levels of
Michelson contrast in total. Altogether our experiment
consisted of 8 relative surround densitiesþ 4 additional
contrast levels, all at two test center densities, 24
conditions in total.
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Design and procedure

The three authors (HCS, CB, & FK) and two naı̈ve
volunteers (VL and YJK) participated in observing, all
of whom had normal or adjusted-to-normal vision.
Each participant completed six sets, in each of which

the 24 conditions were randomly assigned to six trial
blocks (four conditions in each block). Each block
contained separate interleaved staircases (25 trials
each), one for each of the four conditions. In total,
there were 150 trials (six independent staircases) for
each condition.

Figure 1. Stimuli to elicit simultaneous density contrast (SDC). (A) Simple demonstration of the SDC. When fixating at the center, the

sparser top and bottom patterns on the left side make the middle dot texture appear more dense, whereas the denser top and

bottom patterns on the right side make it appear less dense, even though it has the same texture pattern and physical density on

both sides. (B–D) Examples of stimuli used in the experiment. The center dot texture in B appears more dense than in D, and the

center texture in C appears more sparse than in D, even though all of the center textures have the same physical density. The

surround density in B is 1/6 that of the center, whereas the surround density in C is four times that of the center. Note that in the

formal experiment, the diameter of the surround region is six times that of the center rather than two times as shown here.
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In each trial, participants viewed two stimuli in
sequence, first a match stimulus and then a test
stimulus, each presented for 500 ms and separated by a
750 ms interstimulus interval (ISI). We presented the
test stimulus last to avoid potential adaptation effects
from the surround. Participants pressed buttons on a
numeric keypad to indicate which stimulus appeared to
have a center region that was more dense. In practice
trials, both the test stimulus and the match were
presented with a red circle to define the center area, but
this was not shown in the formal experiment. Partic-
ipants were instructed to respond only to the perceived
density of the center areas, regardless of the surround.
No feedback was provided since here we are interested
in the perceptual appearance (and its bias) not accuracy
(though we are interested in the precision of the
judgments). Participants had unlimited time to make a
response, with the next trial following after a 1 s
interval. A fixation cross (0.348 in width) was always
presented in the center of the screen, to avoid
misalignment of the retinal images of the center areas
between the test stimulus and the match.

The density level of the test stimulus was specified by
the experimental condition while the density level of the
match in each trial was adjusted by a staircase
procedure, independently conducted for each of the
conditions being interleaved within a trial block. We
used a staircase with a one up, one down rule, which is
well suited for acquiring a point of subjective equality
(PSE) in an appearance judgment (Kingdom & Prins,
2016). The density level of the match in the first trial of
each staircase was randomly chosen in a range
bracketing the predicted PSE level, 6 21–25 density
levels higher or lower. The predicted PSE level of each
participant in each condition was determined based on
their pilot data. The jump size (density difference) of
subsequent match trials in a staircase was gradually
reduced from 22 to two density levels in the first 11
trials, and was kept the same for the last trials for
convergence.

Data analysis

Individual data analysis

Trial responses in each condition were first summed
across the six staircases for each match density level.
We then fitted a logistic psychometric function to each
condition using a maximum likelihood criterion, using
the Palamedes Toolbox (Prins & Kingdom, 2009). We
chose the logistic function because it tends to give
robust curve–fits for this type of data. Since the density
levels of the match and test stimuli were logarithmically
spaced, they were log-transformed before fitting. PSEs
were estimated from the fits, which were then trans-
formed back to linear-scale values. Slope estimates
were also determined with and without log transfor-

mation for comparison. To estimate standard errors for
PSE and slope, we performed a bootstrap analysis
(Efron & Tibshirani, 1994) in Palamedes that simulated
400 sets of hypothetical data based on the collected
data (Kingdom & Prins, 2016).

Group data analysis

The individual PSE and slope values for the five
participants were pooled by taking their geometric
means and geometric standard errors.

Data analysis for contrast controls

In order to make the results of the contrast control
conditions comparable with those of the main condi-
tions, we transformed the control condition contrasts
into equivalent density levels, i.e., density levels with the
same RMS contrast. To do this we first measured the
RMS contrast for each of the 16 main conditions, and
plotted this as a function of density. These functions
were well described as power functions, for test center
densities of 6.4 and 12.8 dots/deg2 condition respectively:

RMS ¼ 0:1098D ð̂0:5003Þ

RMS ¼ 0:1553D ð̂0:4994Þ

where D¼ relative surround density.
Using these equations we calculated an equivalent D

for each control condition RMS.

Spatial frequency analysis of stimuli

To assess whether spatial frequency components
covary with density, we performed an image-processing
analysis. We used Log-Gabor filters (Field, 1987) to
decompose images of random dot textures of different
center density (6.4, 12.8, 25.6, 51.2 dots/deg2) into six
frequency bands: low pass (,21 cycles/image), high pass
(.171 cycles/image) and four intermediate bands (171,
85, 43, 21 cycles/image), with each band comprising four
orientations (0, 45, 90, and 1358). Reconstructed images
from these filters were highly similar to the original
images, indicating that these filters capture and maintain
most of the important texture information. Pixelwise
standard deviations were then calculated for the filtered
images in each frequency band, which could be
compared for various density levels.

Results

Example psychometric functions (PFs) for naive
observer VL are shown in Figure 2, for relative
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surround densities of 30, 31/6, and 34 and for the two
test center densities of 6.4 and 12.8 dots/deg2 (upper
and lower plots, respectively). Each PF shows the
percentage of trials the match density appeared more
dense than the test, as a function of the match density.
The fitted PSEs are shown as the vertical dashed lines.
The size of each data point indicates the relative
number of trials at each match density—note that the
trials tend to be concentrated around the PSE, as
expected given the nature of the staircase procedure.
The 12.8 dots/deg2 test density PFs (bottom) are shifted
to the right of those for 6.4 dots/deg2 (top) as expected.
Importantly, for both test density conditions, the
sparser surround PFs (green) are shifted to the right of,
and the denser surround PFs (blue) shifted to the left
of, the ‘‘no surround’’ PFs (orange). This indicates that
the perceived density of the test appeared greater with a
sparser surround and lesser with a denser surround,
demonstrating for these PFs a simultaneous density
contrast effect that is bidirectional.

The full set of PSEs for the five observers and their
group average are shown in Figure 3A and 3B. Each
graph shows PSEs as a function of the relative density of
the surround (colored) or equivalent contrast (gray). The
blue and green lines are for the 6.4 and 12.8 dots/deg2

test center conditions, respectively, and are plotted as a
function of relative surround density, whereas the gray
lines are plotted as a function of equivalent contrast. The
horizontal red lines are the PSEs for the ‘‘no-surround’’
baseline conditions—thus points above the red lines
imply that the test density appeared more dense, and

Figure 2. Psychometric functions for näıve observer VL. Each

graph plots the proportion of times the match patch appears

more dense than the test patch, as a function of match density.

Test center densities are 6.4 dots/deg2 (top) and 12.8 dots/deg2

(bottom), and relative surround densities are30 (orange),31/6

(green), and34 (blue). The diameters of filled circles correspond

with the number of trials tested with that value of match

density, as determined by the staircase procedure. Continuous

lines are best fitting logistic functions. The PSEs are where the

vertical dashed lines meet the abscissae and correspond to the

50% horizontal line.

Figure 3. Individual and group PSE results. (A) Graphs showing

individual PSE data as a function of the ratio of surround to test

density for the five observers, and their group average (B). Blue

lines show PSE values for the 6.4 dots/deg2 and green lines for

the 12.8 dots/deg2 test condition. Light gray and dark gray lines

depict the equivalent contrast conditions. ‘‘No-surround’’ PSEs
are indicated by the horizontal red lines. Error bars (for no-

surround conditions the pink areas) are bootstrap-estimated

standard errors. Vertical dashed lines represent points where

surround and test densities are physically equal. For the group

data the geometric mean PSEs and geometric standard errors

calculated across subjects are shown. (C) The same group data,

plotted as a function of absolute surround density (dots/deg2).
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points below the red lines imply that the test density
appeared less dense compared to the no-surround
conditions. The vertical black dashed lines show the
points where match and test densities were physically the
same. The patterns of the data are generally consistent
across observers in showing a bidirectional effect of
surround density. For the denser surrounds there is a
smaller PSE shift below baseline for the higher
compared with lower test densities. The maximum shifts
in perceived density from the sparser surround are on
average 17.1% and 24.9% for the 6.4 and 12.8 dots/deg2

test conditions, while in the opposite direction the
maximum shifts from the denser surrounds are 21.9%
and 8.2% for the two test conditions (Figure 3B). This
demonstrates that the SDC effect is rather salient for
both sparse and dense surrounds (except for the denser
surrounds with the 12.8 dots/deg2 test conditions, where
the SDC effect might have become saturated).

The equivalent contrast PSEs (gray lines) show little
evidence of a bidirectional response, generally forming
relatively straight lines between their endpoints.Note that
the fact that the gray lines are not flat is inevitable given
that they converge with the red no-surround baselines on
the left of the graph (the no-surround baselines equal 0%
Michelson contrast conditions), and the green or blue
lines on the right, where the contrast control and main-
experiment conditions are identical (the relative surround
density of36 equals 88.5% Michelson contrast).

The group data as a function of absolute surround
density (dots/deg2) are shown in Figure 3C, for
comparison with other studies (see Discussion). The two
graphs also show that the peaks and the transition
points (intersections with red line) of the green and blue
lines are aligned with relative surround density (Figure
3B), not absolute surround density (Figure 3C). This
result suggests that changes in the perceived density of
the test center are governed by center-surround differ-
ences in density.

The precision of the density judgments can be
inferred from the PF slopes. Figure 4A shows example
PFs for the two test densities, plotted against a
logarithmic abscissa (left, as in our primary data
analysis) and a linear abscissae (right). The right-hand
linear plot reveals that the PF is less steep, and hence
less precise, for the higher test density. Group slope
data were obtained by averaging across the five
observers for all conditions, in linear units. No
systematic changes between slope and relative surround
densities as well as with the equivalent contrast
conditions were found. The average linear-unit slopes
for the two test densities and for the various surround
conditions are shown in Figure 4B. The left-most bars
(no-surround) show that a doubling of test density
results in a ;1.5-fold decrease in slope, which is close to
a =2 relationship between density and precision. For
the surround-present conditions the decrease in slope

with test density is closer to a factor of 2, i.e., a Weber
relationship between density and precision.

Discussion

Using measurements of simultaneous density con-
trast (SDC) in random dot patterns, we found not only
that a denser surround causes a central test region to
appear less dense than otherwise, but a sparser
surround causes the same region to appear more dense.
This bidirectional SDC effect is unexpected given
previous reports that the density aftereffect is unidi-
rectional (Durgin & Huk, 1997). We will return to the
significance of this finding.

Induction from contrast and or spatial
frequency?

The first question that must be addressed is whether
the effects reported here are a byproduct of contrast

Figure 4. Slope analysis results. (A) Example psychometric

functions (left) with and (right) without logarithmically trans-

forming the match densities on the abscissae, for test densities

6.4 (blue) and 12.8 (green) dots/deg2 (observer FK, relative

surround density 36 condition). The slope difference between

low and high density conditions is clear on the linear abscissa. (B)

Group slope results averaged across different conditions. For

each observer the slope values were averaged across test density,

for, from left to right: relative surround density 0 (‘‘no

surround’’); relative surround densities of 1/216, 1/36, and 1/6

(‘‘sparse surround’’); relative surround densities of 2, 4, and 6

(‘‘dense surround’’); and all conditions (‘‘all’’). Geometric means

and geometric standard errors were calculated across observers.
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induction, since an increasing density of dots at a
given amplitude will entail an increase in RMS
contrast. We assessed the possible contribution of
RMS contrast to the SDC by testing with surrounds of
a constant density, whose RMS contrasts equaled
those that accompanied the changes in the surround
densities employed in the main experiment (Figure 3,
grey lines). However, we found no evidence of
bidirectionality in the contrast surround data and so
we can safely conclude that SDC is not caused by
contrast induction, in keeping with findings from the
density aftereffect (Durgin, 2001; Durgin & Hammer,
2001). Recently Morgan and MacLeod (2014) showed
that for the threshold detection of spatial differences in
density and/or contrast, density and contrast sum
linearly, i.e., are ‘‘non-orthogonal.’’ Our results
demonstrate that for the coding of suprathreshold
differences in density, such nonorthogonality is not
observed.

One might suppose that in varying dot density we
inadvertently change the local spatial frequency content
of the patterns, and that the surround induction effect
is occurring for spatial frequency not density (MacKay,
1973). To examine this possibility, we employed a
wavelet analysis of the spatial frequency composition of
our dot textures for four values of density (Figure 5).
Each texture was filtered into six spatial frequency
bands using Log-Gabor filters, and the SD of pixel
values calculated. Figure 5 shows that the dependence
of SD on spatial frequency band is identical, to within a
scale factor, for all the density levels. Other frequency
bands beyond the range shown in Figure 5 were also
examined. No differential changes in SD across
frequency band with density were found. Therefore it is
hard to see from this result how spatial frequency
contrast could mediate SDC, and hence it does not
appear to be the basis for the bidirectionality in SDC.
Again, this is consistent with evidence from the density
aftereffect (Durgin & Huk, 1997).

Bidirectional versus unidirectional effects

Studies of the density aftereffect have suggested
that density adaptation acts in a unidirectional
manner, i.e., adaptation only ever reduces perceived
density, never increases it (Durgin & Huk, 1997;
Durgin & Proffit, 1991). This would be similar to
contrast adaptation, which only ever reduces per-
ceived contrast (Georgeson, 1985), consistent with
the idea that neuronal responses to contrast are
generally monotonic (but see Ledgeway, Zhan,
Johnson, Song, & Baker, 2005; Peirce, 2007).
However, to our knowledge there has been no
systematic examination of the density aftereffect
across a wide range of adaptor/test density ratios, so

one must conclude with respect to the aftereffect’s
directionality that ‘‘the jury is still out.’’ Moreover, it
has been found that numerosity adaptation is
bidirectional (i.e., perceived numerosity of dots
increases after adapting to small numbers while
decreasing after adapting to large numbers; Arrighi,
Togoli, & Burr, 2014; Burr & Ross, 2008). Since it
has been argued that numerosity perception is based
on density coding (Dakin et al., 2011; Morgan et al.,
2014; Raphael & Morgan, 2015; Tibber et al., 2012),
it is reasonable to conclude that density adaptation is
likely to also be bidirectional. However, future
studies are needed to clarify this.

Density channels?

A bidirectional SDC is consistent with the idea that
density is not represented as a scalar attribute like
contrast, but by ‘‘channels’’ that are selective to limited
ranges of density. If so, in keeping with explanations of,
for example, the tilt illusion (or simultaneous orienta-
tion contrast; Blakemore et al., 1970; Clifford, 2014),
SDC would arise from inhibition of the channels
sensitive to the test by those sensitive to the surround,
causing a repulsive shift in the population activity of
the test-sensitive channels.

An alternative interpretation might be that the
bidirectionality of SDC could have a cognitive origin,
i.e., is SDC inferential rather than perceptual? This
seems unlikely given that participants were instructed
to ‘‘ignore’’ the surround and focus only on the center
area.

If there are indeed density channels, as our results
suggest, the findings of this study may help to constrain
and develop existing models of density coding (Dakin
et al., 2011; Durgin, 1999; Kingdom, Hayes, & Field,
2001; Zavitz & Baker, 2014).

Figure 5. Wavelet analysis of spatial frequency bands in random

dot stimuli. The images of the four center density levels

indicated were decomposed into six spatial-frequency bands by

Log-Gabor filters. Response in each frequency band was

estimated as pixelwise SD of the filtered images. Density

increases the SD in all frequency bands similarly.
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Texture density versus numerosity

Although the aim of this communication is not to
test directly whether it is density rather than numer-
osity that mediates SDC in our stimuli, we have
assumed from the start that it is density, so some
justification for this is necessary. Based on density/
numerosity discrimination data, Anobile, Turi, Cic-
chini, and Burr (2015) argue that for centrally viewed
stimuli, densities greater than around 2 dots/deg2 are
mediated by density not numerosity coding mecha-
nisms. Our central test patches, to which observers
directed their judgments, were 6.4 and 12.8 dots/deg2,
i.e., well within Anobile et al.’s (2015) density-coding
range. Moreover, although we found close to a Weber-
like decline in precision with density for the with-
surround conditions, the without-surround precision
showed an approximately square-root decline, in
keeping with the density-coding range precisions
measured for nonsurrounded stimuli by Anobile,
Cicchini, and Burr (2014, 2016).

Our surrounds covered a large range of eccentricities
(2.178–13.048). According to Anobile et al. (2015), the
switch from numerosity to density coding shifts to
lower densities with eccentricity, for example to 0.5
dots/deg2 for an eccentricity of 158. We found,
however, that surrounds as low as 0.18 and 0.36 dots/
deg2 (31/36 relative surround density conditions),
which are within Anobile et al.’s (2015) numerosity
range, had an appreciable impact on the perceived
density of our test stimuli. This finding appears
inconsistent with the idea of independent coding of
numerosity and density (Anobile et al., 2014, 2016).
Rather, our data are consistent with a common basis
for coding density and numerosity (Dakin et al., 2011;
Morgan et al., 2014; Raphael & Morgan, 2015; Tibber
et al., 2012), with density as the primary visual attribute
(Raphael & Morgan, 2015). It nevertheless remains an
open question as to whether there are densities
sufficiently low to exclusively tap numerosity coding
mechanisms in SDC stimuli, in other words whether
there is ‘‘simultaneous numerosity contrast’’ (SNC) as
well as SDC.

The neurophysiological basis of density coding is not
yet clear, but evidence from numerosity studies might
provide some hints. Brain imaging studies in both
human and monkey show that numerosity information
is represented in parietal cortex and lateral prefrontal
cortex (Cohen Kadosh, Bien, & Sack, 2012; Dormal,
Andres, Dormal, & Pesenti, 2010; Harvey, Klein,
Petridou, & Dumoulin, 2013; Nieder, 2012a, 2012b;
Piazza & Izard, 2009; Roitman, Brannon, & Platt,
2012; Santens, Roggeman, Fias, & Verguts, 2010;
Tudusciuc & Nieder, 2009). Density processing might
therefore also occur in these areas, given the close
relationship between density and numerosity.

Potential biases

Previous studies have shown that large texture
patches are perceived as more dense than small patches
of the same density (Bell, Manson, Edwards, & Meso,
2015; Dakin et al., 2011; Raphael, Dillenburger, &
Morgan, 2013; Raphael & Morgan, 2015; Tibber et al.,
2012). If so we might expect that the tests with
surrounds of the same density would be perceived as
more dense than tests with no surrounds. The relevant
points here are the vertical dashed lines in Figure 3B.
However, if anything, the trend is toward observers
perceiving the with-surround stimuli as less dense (most
points are either at or below the red line), so it would
appear that the bias found in previous studies is not
manifesting itself here. A likely reason for the lack of a
size-based density bias in our stimuli is that observers’
judgments were directed to the central test area rather
than to the stimulus as a whole.

In generating our stimuli we held constant the degree
of regularity across density to prevent dot clusters and
blank areas in the more sparse textures, which might
have influenced SDC. However, when holding regu-
larity constant, the minimum interdot distance neces-
sarily covaries with density. Could this be a cue? In our
pilot studies we did not control for regularity, instead
fixing the minimum interdot distance, and found a
similar bidirectional SDC. Therefore it seems unlikely
that changes in minimum interdot distance with density
caused the bidirectional SDC.

Another possible confounding effect related to
interdot spacing is perceived distance. It is possible that
dense textures appear to lie farther from the viewer
than sparse textures due to a form of size constancy
that one might term density constancy. As a result, a
test of given density surrounded by a sparse (i.e.,
apparently close) texture might be inferred to be more
dense than one surrounded by a dense (i.e., apparently
far) texture. However, such an effect is likely to be
rather small since dot size, presumably the more
significant depth cue, was kept constant, as was also all
other depth cues. In addition, participants were asked
to focus on the test area, so it seems unlikely that they
would make such depth inferences from the interdot
distances in the surround.

In our experiments we always presented the variable
match stimulus first and then the test stimulus. This
design was deemed necessary in order to minimize
potential adaptation effects, which might weaken SDC.
A potential problem with a fixed and hence known
order of presentation is that participants could simply
ignore the test interval and base their judgments solely
on their memory of the test. However, our use of two
test densities, randomly interleaved within a given
block, eliminated this possibility.
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The role of visual field locus in SDC is not examined
in this study, as we always presented test and match
stimuli in the center, and the surround stimuli covered a
wide range of the visual field. It would be interesting to
investigate how location (i.e., eccentricity) affects SDC,
and in particular, whether the bidirectionality is
preserved in peripheral vision.

Conclusion

Our findings support the idea that there are density-
selective channels in the visual system, and that
perceived density is in part based on a comparison of
these channel responses across space.

Keywords: simultaneous contrast, adaptation, texture,
texture density
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