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First published March 2, 2016; doi:10.1152/jn.00659.2015.—In the
visual cortex, distinct types of neurons have been identified based on
cellular morphology, response to injected current, or expression of
specific markers, but neurophysiological studies have revealed visual
receptive field (RF) properties that appear to be on a continuum, with
only two generally recognized classes: simple and complex. Most
previous studies have characterized visual responses of neurons using
stereotyped stimuli such as bars, gratings, or white noise and simple
system identification approaches (e.g., reverse correlation). Here we
estimate visual RF models of cortical neurons using visually rich
natural image stimuli and regularized regression system identification
methods and characterize their spatial tuning, temporal dynamics,
spatiotemporal behavior, and spiking properties. We quantitatively
demonstrate the existence of three functionally distinct categories of
simple cells, distinguished by their degree of orientation selectivity
(isotropic or oriented) and the nature of their output nonlinearity
(expansive or compressive). In addition, these three types have dif-
fering average values of several other properties. Cells with nonori-
ented RFs tend to have smaller RFs, shorter response durations, no
direction selectivity, and high reliability. Orientation-selective neu-
rons with an expansive output nonlinearity have Gabor-like RFs,
lower spontaneous activity and responsivity, and spiking responses
with higher sparseness. Oriented RFs with a compressive nonlinearity
are spatially nondescript and tend to show longer response latency.
Our findings indicate multiple physiologically defined types of RFs
beyond the simple/complex dichotomy, suggesting that cortical neu-
rons may have more specialized functional roles rather than lying on
a multidimensional continuum.

visual cortex; receptive field; cell types; system identification; natural
images

RECEPTIVE FIELD (RF) properties of early visual cortex neurons
are fundamentally important to achieving an understanding of
early visual signal processing—in particular, to understand
how details of visual images are represented by neuronal
signals, for example, in extraction of simple features or in
efficient coding of natural images (NIs). RF properties may
also be suggestive of underlying neural circuitry, e.g., neurons
with simple properties might serve as a substrate for construc-
tion of selectivity for more complex features. In general,
comparison of RF properties in different cortical areas can help
elucidate differences in overall functionality of those areas.

Early visual cortex neurons are widely viewed as lying on a
multidimensional continuum of RF properties such as optimal

orientation or spatial frequency (SF). The only generally rec-
ognized categorical types have been simple and complex cells,
based on segregation of excitatory and inhibitory zones (Hubel
and Wiesel 1959) or degree of response modulation by gratings
(Skottun et al. 1991). The apparent lack of physiological
categories of cortical neurons might seem consistent with the
idea that because of the extreme connectivity (“random wir-
ing”) of cortical circuitry (Chklovskii 2004) each neuron would
show some physiological attributes of many others, but most
previous studies of visual cortex neurons have used very
simple, stereotyped stimuli such as bars, sine wave gratings, or
white noise (WN), which might fail to reveal important RF
properties. Another limitation of previous studies may have
been the widespread use of manually controlled, bar-shaped
“search stimuli” to look for responsive neurons, which could
have introduced sampling biases (Olshausen and Field 2005).

Here we employ visually rich NI stimuli to activate visual
neurons in cat Area 18 (A18) and estimate spatiotemporal
receptive field (STRF) using system identification with regu-
larized regression methods (Wu et al. 2006). RF estimates
derived from NI stimuli can more accurately predict neural
responses to other types of visual stimuli (Felsen et al. 2005;
Talebi and Baker 2012). Additionally, NIs may drive neurons
at a more ecologically relevant operating point, potentially
revealing important distinguishing properties of neural re-
sponses (David et al. 2004; Felsen and Dan 2005). Here we
also utilize multielectrode recording with post hoc spike sort-
ing, without reliance on prior use of search stimuli to isolate
single neurons. We concentrate our analysis on simple cells,
which have significant linear response components and are
therefore amenable to our analysis [linear-nonlinear (LN)
model architecture; see METHODS]. We sample neurons in A18
primarily because our long-term objectives are to understand
second-order processing (Mareschal and Baker 1998), which is
more prevalent in cat A18 than in Area 17 (A17) (Zhou and
Baker 1994), and more generally because there may be greater
scope in a secondary cortical area for NI stimuli to reveal more
complex processing (e.g., Hegde and Van Essen 2000).

Quantitative analysis of the estimated RFs reveals a greater
diversity of RF properties than previously described. We are
able to distinguish three kinds of simple-type cells, distin-
guished by their degree of orientation selectivity and the nature
of their output nonlinearity. The three cell types also differ
from one another in optimal SF, temporal dynamics, direction
selectivity, and spiking properties. These results challenge the
prevailing idea that early cortical neurons operate across an
amorphous continuum. Instead, physiological response prop-
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erties are categorically distinct, implying that visual cortex
neurons have specialized functional roles.

METHODS

Animal preparation. Anesthesia was induced by isoflurane-oxygen
(3–5%) inhalation, followed by intravenous (iv) cannulation and bolus
iv injection of thiopental sodium (8 mg/kg) or propofol (5 mg/kg).
Surgical anesthesia was maintained with supplemental doses of thio-
pental sodium or propofol. Atropine sulfate (0.05 mg/kg iv) or
glycopyrrolate (30 �g im) and dexamethasone (0.2 mg/kg iv or 1.8
mg im) were administered and a tracheal cannula or intubation tube
inserted. Throughout the surgery, body temperature was thermostati-
cally maintained and heart rate was monitored (Vet/Ox Plus 4700).

The animal was then positioned in a stereotaxic apparatus and
connected to a respirator (Ugo Basile 6025). In early experiments,
pentobarbital sodium (1.0 mg·kg�1·h�1) was administered after a
bolus injection to effect. In later experiments, propofol (5.3
mg·kg�1·h�1) was supplemented with fentanyl citrate (7.4
�g·kg�1·h�1) after a bolus injection (2.5 �g/kg). Both anesthesia
regimes were further supplemented with oxygen-nitrous oxide (70:
30), and a continuous infusion of lactated dextrose-saline (2 ml/h iv)
was supplied. A craniotomy (A3/L4) over cortical A18 was per-
formed, followed by a small durotomy. The cortical surface was
protected with 2% agarose capped with petroleum jelly. Paralysis was
produced with a bolus iv injection of gallamine triethiodide (to effect),
followed by infusion (10 mg·kg�1·h�1). Local injections of bupiva-
caine (0.50%) were administered at all surgical sites. Expired CO2,
EEG, ECG, body temperature, blood oxygen, heart rate, and airway
pressure were monitored and maintained at appropriate levels.

Corneas were initially protected with topical carboxymethylcellu-
lose (1%) and subsequently with neutral contact lenses. Spectacle
lenses were selected with slit retinoscopy to produce emmetropia at 57
cm, and artificial pupils (2.5 mm) were provided.

Daily maintenance included topical atropine sulfate (1%) and
phenylephrine hydrochloride (2.5%), as well as intramuscular glyco-
pyrrolate (16 �g) and dexamethasone (1.8 mg). All animal procedures
were approved by the McGill University Animal Care Committee and
are in accordance with the guidelines of the Canadian Council on
Animal Care.

Stimuli. Visual patterns were generated on a Macintosh computer
(MacPro, 2.66 GHz Quad Core Intel Xeon, 6 GB, NVIDIA GeForce
GT 120) with custom software written in MATLAB (MathWorks) and
the Psychophysics Toolbox (Brainard 1997; Kleiner et al. 2007) and
displayed on a gamma-corrected CRT monitor (NEC FP1350, 20 in.,
640 � 480 pixels, 75 Hz, 36 cd/m2) at a viewing distance of 57 cm.

Broadband NI stimuli were constructed from 480 � 480-pixel
monochrome portions of high-quality digital photographs (Olmos and
Kingdom 2004). Nearly blank images (e.g., sky, water) were rejected
by setting a root mean square energy threshold. Remaining images
were root mean square-normalized with mean luminance equated for
each image. Images were assembled into stimulus ensembles, con-
sisting of 375 images presented as 5-s movies. In some cases (21 of
212) each image was presented for two frames, to drive a stronger
response.

Electrophysiology. Extracellular recordings were obtained with
single-channel, glass-coated platinum-iridium or Parylene-coated
tungsten microelectrodes (Frederick Haer) and silicon linear-array
multielectrodes (NeuroNexus A1�16 or A1�32) or multishank te-
trodes (NeuroNexus A4�1-tet) with 177-�m2 pad sizes. Electrode
penetrations were made approximately perpendicular to the brain
surface, yielding similar RF locations for recording sites along the length
of a linear-array multielectrode. Electrodes were advanced with a step-
ping motor microdrive (M. Walsh Electronics, uD-800A). A primary,
single-channel recording pathway incorporated an audio monitor, a win-
dow discriminator (Frederick Haer) to isolate single units, and a delay-
triggered oscilloscope to monitor isolation. Spike times were recorded at

a resolution of 100 �s (Instrutech, ITC-18) and time-referenced to the
stimulus with an optical photo sensor (TAOS T2L 12S) placed on a
corner of the CRT monitor containing stimulus timing information. A
secondary, parallel, multichannel recording pathway (Plexon Re-
corder, version 2.3) acquired broadband raw signals for up to 32
channels at 40 kHz and stored them to hard disk for subsequent spike
sorting and detailed analysis. One of the channels was also routed to
the primary recording pathway for online analysis to guide the
recording protocol.

For single-channel electrodes, or in some cases for a selected site
of a multielectrode, manually controlled bar-shaped stimuli were used
to assess the approximate location, orientation preference, and ocular
dominance of isolated neurons or of multiunit activity. Recorded cells
had eccentricities ranging from 5° to 30°. The CRT monitor was
centered accordingly, and all subsequent stimuli were presented mon-
ocularly to the dominant eye. Single isolated neurons were first
characterized with conventional tuning curve measurements using
sine wave grating patterns to determine optimal SF, orientation, and
temporal frequency. The cell’s RF was further localized by displaying
small grating patches at a grid of spatial locations, and the monitor
was repositioned as necessary.

NI ensembles were then presented, with three independent data sets
collected for training, regularization, and validation (Fig. 1), each
requiring �20–30 min. The training stimuli consisted of 20 image
ensembles (total of 7,500 unique images), each repeated 5 times. The
regularization and validation stimuli each consisted of 5 image en-
sembles (1,875 unique images each), each repeated 20 times. This
trade-off of stimulus diversity vs. repetitions was aimed at maximiz-
ing the informativeness provided by unique images (training) but
minimizing average response variance (regularization, validation).

Responses from a total of 508 neurons were collected in 26 adult
cats of either sex. Additional data were also collected during these
recording sessions as part of other ongoing projects in the same
laboratory.

Data analysis: estimation of receptive field models. In experiments
in which raw neuronal data were recorded, spike waveform signals
were sorted post hoc with Plexon Offline Sorter (Plexon, version
3.2.3). Single units were carefully classified manually with conserva-
tive thresholds for clear separation of distinct signals.

Neurons were classified as simple or complex based on the degree
of firing rate modulation by an optimal drifting grating (Skottun et al.
1991) or the presence of distinct excitatory and inhibitory subregions
in the estimated RF maps. Only simple-type cells having a sufficient
response (see below) to our stimuli (N � 212) were used for subse-
quent analysis.

The NI ensembles were normalized to have zero mean and unity
standard deviation for the entire stimulus matrix. Stimulus images
(480 � 480) were cropped with a square window designed to
efficiently encompass the RF and downsampled to 32 � 32. The
cropping window was selected by an unsupervised procedure based
on the width of the best-fitting two-dimensional (2D) Gaussian or
Gabor function applied to a low-resolution estimate of the spatial RF
at the peak lag; in a minority of cases in which this procedure failed,
the window was determined by manual inspection.

Spike times were collected into poststimulus time histograms
binned at the stimulus refresh rate (i.e., bin width 13.3 ms), which
were averaged across repetitions and normalized to have zero mean
and unity standard deviation for the entire response. For cells produc-
ing average spike frequencies � 1 spike/s the gradient descent
algorithm (see below) generally failed to converge, and these cells
(�10% of the total sample) were omitted from further analysis. Our
resultant sample included 69 neurons from single-channel (Frederick
Haer) electrodes, 132 from linear-array multielectrodes (NeuroNexus
A1�16 or A1�32), and 11 from multishank tetrodes (NeuroNexus
A4�1-tet).

Each neuron’s RF model was estimated within the framework of a
generalized linear model, consisting of a linear STRF and a zero-
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memory nonlinearity (ZMN; Fig. 1A) (Wu et al. 2006), with the
strflab toolbox for MATLAB (Oliver 2010). Further details of the
model architecture and its estimation and evaluation may be found in
our earlier paper (Talebi and Baker 2012). In brief, neuronal responses
to training stimuli were used to estimate the pixel “weights” of the
linear STRF. The weights were optimized with iterative gradient
descent to minimize the mean square error between the responses of
the model and those in the training data set. To circumvent overfitting,
regularization was implemented with early stopping (Hagiwara 2002;
Willmore et al. 2010)—the gradient descent was halted when further
iterations failed to produce improvements in the ability of the trained
model to predict the regularization data set. The ZMN was modeled as
a half-wave rectified power law, whose exponent was fit (with
MATLAB’S fminsearch) to a plot of measured training responses vs.
predicted values based on the estimated STRF.

Responses to a novel set of validation stimuli were used to
assess the predictive ability of the estimated RF model (Fig. 1B).
The validation stimuli were convolved with the STRF and put
through the ZMN to produce a predicted response that was com-
pared with the actual validation response. The predictive accuracy
was quantified as “raw variance accounted for” (raw VAF), which is
the square of the correlation coefficient expressed as a percentage. In
practice, the raw VAF would never reach 100%, since neural re-
sponses are very noisy and the RF model undoubtedly fails to capture
other nonlinearities not instantiated in the model architecture. To
address this issue we used a noise ceiling analysis (David and Gallant
2005; Talebi and Baker 2012) that incrementally increases the amount
of data used to train and validate the estimated STRF. This “explain-
able” VAF provides an estimate of the fraction of total response that
could theoretically be predicted in the absence of neural noise. The

estimated RF models used here produced reasonable levels of predic-
tive power (average raw VAF 20%, explainable VAF 41%) for useful
consideration of RF properties.

All of these data analysis procedures were extensively validated by
testing on both hardware (Li et al. 2010) and software models.

Data analysis: characterization of RF models. Orientation and SF
selectivity were assessed at the peak lag (temporal lag with highest
average variance). The spatial RF at that lag (Fig. 2A) was multiplied
by a Gaussian window and zero-padded to reduce high-frequency
edge effects in the Fourier transform. The magnitude part of the 2D
FFT (Fig. 2B) was converted to a plot of amplitude as a function of SF
and orientation (Fig. 2C). Note that the two peaks are not necessarily
symmetrical, since they now represent opposite directions of motion.
From this plot a one-dimensional orientation profile was extracted at
the highest average SF (Fig. 2D). The orientation profile was charac-
terized by a vector-based summation method to indicate orientation
bias and optimal orientation (Leventhal et al. 2003; Worgotter and
Eysel 1987):

OB � ��k Rke
i2�k

�k Rk
� (1)

Oopt � arg��k Rke
i2�k

�k Rk
� (2)

where Rk � response at stimulus orientation �k; OB � orientation
bias; and Oopt � optimal orientation. OB values are dimensionless and
have a bounded range between zero (no orientation selectivity) and
unity (perfect selectivity). Oopt has a bounded range between 0°

Fig. 1. System identification procedure. Neural responses of simple-type cells to natural image stimuli were used to estimate receptive field (RF) models and
evaluate their predictive robustness. A: RF model estimation. Training and regularization data sets (i.e., stimuli and responses) were used to estimate a
3-dimensional [space (x)-space (y)-time (t)] spatiotemporal receptive field (STRF), modeled as a linear (L) filter. A subsequent zero-memory nonlinearity (N)
was fit from comparison with measured responses. L and N together make up the estimated RF model. B: RF model evaluation. The estimated RF model’s
response to a separate set of validation stimuli provides a predicted response, which was compared with the actual (measured) validation response. The quality
of prediction was quantified by the percentage of measured response variance accounted for (VAF) by the predicted response.

2558 DISTINCT RECEPTIVE FIELD TYPES IN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00659.2015 • www.jn.org



and 180°. Cells with orientation bias values � 0.1 are considered
to be orientation sensitive (Leventhal et al. 2003).

As an alternative measure of orientation selectivity, we fitted the
tuning curves with a von Mises function (Batschelet 1981; Swindale
1998):

R��� � kew�cos 2���Oopt��1	 (3)

where R(�) � response at stimulus orientation �; k � maximum
response amplitude; Oopt � optimal orientation; and w � a width
parameter indicative of orientation bandwidth.

The SF tuning curve (Fig. 2E) was similarly determined by ex-
tracting a SF profile at peak average orientation. This SF tuning curve
was fit with a Gaussian function to yield estimates of SF bandwidth
and optimal SF (DeAngelis et al. 1994):

R�sf� � ke�� sf � SFopt

� �2

� R0 (4)

where k � maximum response amplitude; sf � measured SF in
cycles/°; SFopt � optimal SF; 1.65� � full width at half-maximum
(FWHM) tuning bandwidth in octaves; R0 � spontaneous response;
and R(sf) � fitted response as a function of SF (shown as the dashed
red line in Fig. 2E). k, SFopt, �, and R0 were the free parameters of the
fitted function. We employed a parametric approach to characterize
SF tuning curves because they all have very similar shapes for visual
cortex neurons, and therefore all could be fit accurately with the same
function. In other cases where the shape of the response function is
highly variable from one neuron to another (below), we instead
employ nonparametric approaches.

To assess whether the spatial RF at peak lag was dominated by
excitatory (ON) or by inhibitory (OFF) regions, a “zero balance
index” (ZBI) was calculated:

ZBI �
� wpos � �� wneg�
� wpos � �� wneg�

(5)

where 
wpos � sum of all positive-valued linear filter weights and
|
wneg| � absolute value of the sum of all negative-valued linear filter
weights. The ZBI ranged from �1 to 1, with 0 representing a balanced
spatial RF, a positive number an ON-dominated spatial RF, and a
negative number an OFF-dominated spatial RF.

The neuron’s temporal profile and spatial aspect ratio were quan-
tified by creating a variance map of the STRF (Fig. 3A) (Malone et al.
2007; Xing et al. 2009; Zheng and Yao 2012). (Note that Gabor curve
fits were not used because many STRFs were orientationally isotropic
and thus not well fit by Gabor functions). The first noncausal lag was
included as part of the STRF estimation, and the mean of its variance
was used as a measure of the baseline noise and subtracted from the
variance of the STRF estimate:

Varmap�i, j, k� � w�i, j, k�2 � c�i, j�2� (6)

where w(i,j,k) � weight of i,jth pixel and kth time index of the STRF;
c(i,j) � noncausal RF estimate at i,jth pixel; and Varmap(i,j,k) �
variance map of the STRF at i,jth pixel and kth time index.

Averaging the variance map spatially at each lag resulted in the
temporal profile of the neuron’s response (Fig. 3B). The average vari-
ances at each lag were fit with a piecewise polynomial form of a cubic
spline interpolation (MATLAB’S spline), in order to extract the time to
peak response (response latency, RL) and the width of the temporal
envelope (response duration, RD). RL was measured as the time at
which the interpolating spline reached maximum value. RD was
computed between the levels that were 1/e of the peak envelope value
(DeAngelis et al. 1993).

Fig. 2. Tuning parameters. Procedure for extracting orientation and spatial frequency (SF) tuning parameters from spatial receptive fields (RFs). A: the spatial
RF at peak latency is extracted from the spatiotemporal receptive field (STRF). B: the magnitude part of the 2D Fourier transform (FFT) (i.e., amplitude spectrum)
is computed and frequency shifted so SF components are symmetrical about the origin. C: the polar representation of the amplitude spectrum is converted to
Cartesian coordinates, resulting in a plot of amplitude as a function of SF and orientation (Ori). The global peak value of this plot was used to construct transects
(dashed lines) for orientation and spatial tuning profiles. D: taking a profile along the Ori axis (y-axis) at peak SF in C results in an orientation tuning curve,
which is parameterized by a vector summation method. This example cell has an optimal orientation (Oriopt) of 37.4° and orientation bandwidth (OB) of 0.31.
E: taking a profile along the SF axis at peak Ori in C results in a SF tuning curve. This example cell has an optimal SF (SFopt) of 0.07 cycles/° and a SF bandwidth
(SFBW) of 2.12 octaves. Dashed red line represents the fitted Gaussian function according to Eq. 3.

2559DISTINCT RECEPTIVE FIELD TYPES IN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00659.2015 • www.jn.org



To estimate the aspect ratio of the neuron’s RF (Fig. 3C), the spatial
variance map at peak lag was rotated to a vertical orientation with
principal component analysis. Since the peak spatial variance map is 2D,
there are two principal components, with the first following the direction
of maximum variance (length) and the second being orthogonal to it
(width). The ratio of the first principal component’s column elements is
the slope of the principal axis, whose angle with respect to the vertical
corresponds to the rotation angle. Averaging across the length yields an
X profile (i.e., a 1-dimensional representation of the RF’s spatial width),
while averaging across the width yields a Y profile (i.e., length). To
determine each neuron’s aspect ratio, the centroids of the X/Y profiles
were first calculated as weighted means:

x�w �
� wixi

� wi
(7)

y�w �
� wiyi

� wi
(8)

where in Eq. 7 wi is the corresponding length-averaged linear filter
weights for each observation xi and �xw is the centroid along the x-axis.
Similarly in Eq. 8, wi is the corresponding width-averaged linear filter
weights for each observation in yi and �yw is the centroid along the
y-axis. The width (W) and length (L) of the X and Y profiles were then
calculated as

W � 2 	 
x � 2 	�
� wi�xi � x�w�2

�n � 1�� wi

n

(9)

L � 2 	 
y � 2 	�
� wi�yi � y�w�2

�n � 1�� wi

n

(10)

where 
x and 
y � weighted standard deviations along the width and
length, respectively, and n � total number of weights along the

Fig. 3. Variance maps. Nonparametric procedure to extract temporal and spatial properties. A: variance map computed from the estimated spatiotemporal
receptive field (STRF). B: average variance of STRF at each time lag results in a temporal profile. blue points are the average variance at each lag, and red dashed
line is a fitted spline. Response latency (RL) is taken as the latency to the peak of the fitted spline. Response duration (RD) is taken as the duration between
thresholds of 1/e times the peak value. In this example, RL � 23.6 ms and RD � 76.8 ms. C: variance map at peak latency is used to determine the spatial profile.
Rotating the peak variance map to vertical and then averaging along the y-axis results in a X profile, while averaging along the x-axis results in a Y profile. The
width (W) and length (L) are determined by computing the weighted means and standard deviations of the X and Y profiles, respectively. The length-to-width
aspect ratio of this example cell is L/W � (23.2 � 11.7)/(21.1 � 11.4) � 1.2.

2560 DISTINCT RECEPTIVE FIELD TYPES IN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00659.2015 • www.jn.org



profiles. The spatial aspect ratio was then taken as the maximum of the
dimensions L and W, divided by their minimum.

A direction selectivity index (DSI) was calculated to indicate the
degree of a neuron’s space-time nonseparability that would give rise
to direction selectivity (Fig. 4) (Baker 2001; DeAngelis et al. 1993).
A three-dimensional STRF estimate was rotated to vertical (Fig. 4A)
using the rotation angle calculated from principal component analysis
(as above). Taking the mean along the RF’s length, for each lag, then
upsampling, resulted in a square 2D space (x)-time (t) RF (Fig. 4B).
The magnitude part of its Fourier transform was frequency shifted
(Fig. 4C), with the upper quadrants representing the responses in the
preferred and null directions (because of symmetry, the bottom
quadrants were redundant). The DSI was calculated as

DSI �
Rp � Rn

Rp � Rn
(11)

where Rp � preferred direction response, taken as the peak value in
quadrant 1, and Rn � null direction response, taken as the value in
quadrant 2 at the same spatial and temporal frequency of Rp. The
upper quadrants were flipped along the vertical as needed to always
place Rp in quadrant 1, since here we are interested in the amount of
direction selectivity and not its preferred direction. The DSI has a

bounded range between 0 and 1, where 0 is entirely non-direction-
selective (i.e., space-time separable) and 1 is perfectly direction-
selective (i.e., space-time nonseparable). It is important to note that
although a separable filter would not produce direction selectivity and
a nonseparable filter would be selective for direction of motion (Reid
et al. 1991), the DSI is not a completely general index of spatiotem-
poral nonseparability as such. It applies only to the particular kind of
space-time nonseparability related to a spatiotemporally linear mech-
anism of direction selectivity.

Data analysis: spiking responses and spike waveforms. Several
measures of spiking response properties were measured for each
neuron. Spontaneous activity was measured by counting the num-
ber of spikes that occurred during the 1-s mean luminance blank
screen that preceded each stimulus ensemble. Responsivity was
taken as the average number of spikes that occurred during stim-
ulus presentation minus the average spontaneous activity. Both of
these measurements were averaged across all repetitions of all
stimulus ensembles used for all three data sets (training, regular-
ization, validation) on each neuron.

As an indicator of the lifetime sparseness of a neuron’s firing,
we employed a measure of the neuron’s stimulus selectivity
(Lesica et al. 2007; Vinje and Gallant 2002). This sparseness index
(SI) was calculated as

Fig. 4. Direction selectivity. Procedure for determining a direction selectivity index (DSI), which can be used to infer the degree of space-time separability that
would give rise to direction-selective responses. A: a full space-space-time RF for an example cell, rotated to a vertical orientation, showing a leftward phase
progression across time lags. B: averaging across 1 spatial dimension (i.e., along y) results in a 2D RF (space x, time t). C: the magnitude part of the 2D Fourier
transform (i.e., amplitude spectrum) of B, as a function of temporal frequency (TF) and spatial frequency (SF). Dashed white lines represent the boundaries of
the quadrants, with preferred direction in the top right (1) and nonpreferred in the top left (2). In this example, the cell has a DSI � 0.54.
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SI �
1 � �2 ⁄ ��2 � 
2�

1 � 1 ⁄ n
(12)

where � � mean response, 
 � standard deviation of response, and
n � number of time bins. This index ranges from zero (equal response
to all stimuli) to unity (response to only 1 stimulus image).

An index of the trial-to-trial reliability of a neuron’s response to a
given stimulus was calculated from a signal-to-noise ratio estimate
(Borst and Theunissen 1999; Lesica et al. 2007). First the mean
response to multiple repetitions of a stimulus ensemble was calcu-
lated, and its Fourier spectrum provided an estimate of the signal.
Then for each trial the noise was taken as the difference between the
ensemble mean response and the individual response, and the mean
power spectrum of these noise functions provided the noise spectrum.
The reliability index (signal-to-noise ratio) was the ratio of the total
power in each of these spectra.

Spike widths were measured from spike waveforms (8 ms) ex-
ported from Plexon Offline Sorter, which were sampled at 31.25 kHz
in 32-channel recordings and at 40 kHz in 16-channel or single-
channel recordings. For comparison to different measures used in the
literature, we took the FWHM and also the time from the waveform’s
maximum to its minimum (“peak to valley”). This analysis could only
be performed for cells that were isolated with off-line spike sorting
(for those obtained with a hardware window discriminator, only the
times of detected spike events were recorded).

Population average values are reported as means � SE. Signifi-
cance of pairwise comparisons was, unless noted, evaluated with
unpaired Student’s t-tests. Significance of histogram bimodality was
assessed with the Hartigan dip test (Hartigan and Hartigan 1985).

Cluster analysis. To objectively determine whether there were
multiple clusters of pairs of neuronal RF parameter values, and if so
how many, a Gaussian mixture model (GMM) clustering algorithm
(McLachlan and Basford 1988) was employed with MATLAB’S
gmdistribution.fit. A Gaussian mixture distribution with specified num-
ber of components (i.e., clusters) was fit to the data with an expectation-
maximization (EM) algorithm that constructs a maximum likelihood
estimate of the parameters in the GMM. GMMs assume that data points
are sampled from a mixture of a finite number of Gaussian distributions,
each having its own mean (location) and covariance (shape). Each data
point has a posterior probability assignment, indicating the probability of
belonging to a specific cluster. Cluster membership is assigned by
maximizing these posterior probabilities.

Akaike and Bayes information criteria (AIC and BIC, respectively)
(Akaike 1974, 1998) were used to objectively determine the appro-
priate number of clusters in the GMM. These information criteria
penalize models with too many additional parameters, thereby pre-
venting overfitting. The candidate model that is most appropriate is
the one with the lowest AIC/BIC value.

RESULTS

Some representative examples of estimated RF models for
simple cells are shown in Fig. 5. Each row depicts results for
one cell, showing a STRF across eight time lags (0.0 ms to 93.3
ms), a fitted ZMN with the exponent (a) of the power law
nonlinearity, the orientation bias (OB) at peak lag, and the
explainable VAF. In the first example (Fig. 5A), the RF map
exhibited adjacent, elongated alternating ON and OFF regions,
resembling a Gabor-like structure, which produced a strong
orientation bias (OB � 0.31). There was a weak phase reversal
at later time lags, and the ZMN was expansive, with a power
law of 2.4. This example neuron had a RF structure and output
nonlinearity that resemble those typically reported by other
groups (Gardner et al. 1999) and is the basis for many popular
models of early cortical RFs, e.g., Gabor filters followed by

half-squaring (Heeger 1992). Another example (Fig. 5B) had a
horizontally oriented ON region and flanking OFF lobes (pos-
sibly with a slight crescent shape, as in Conway and Living-
stone 2006), as well as strong orientation bias (OB � 0.25).
The ZMN was expansive, with a power of 1.5.

Unlike the above examples, a substantial minority of cells
had nonoriented RFs. For example, in Fig. 5C the cell had an
ON-center, OFF-surround structure, no orientation selectivity
(OB � 0.05), and a clear phase reversal at later time lags. The
ZMN was expansive, with a power of 1.4. A somewhat noisier
example (Fig. 5D) had a concentric, OFF-center/ON-surround
STRF, no orientation selectivity (OB � 0.01), and a strong
phase reversal at later time lags. The ZMN was expansive, with
a power of 2.0. Nonoriented RFs have been previously reported
in cat visual cortex (e.g., Dragoi et al. 2001; Hirsch et al. 2003;
Martinez et al. 2005; see also discussion by Ringach et al.
2002), but we were surprised to encounter them so frequently
(about one-third of the sample).

Other neurons exhibited less clearly stereotypical RF maps,
with spatiotemporal structures that were more varied compared
with the typical Gabor-like or center-surround structure of the
above examples. In Fig. 5E, the RF map had adjacent horizon-
tal ON and OFF regions and was orientation selective (OB �
0.33). Unlike the previous examples, the ZMN was compres-
sive, with a value of 0.5. In Fig. 5F, the STRF had a somewhat
nondescript spatial structure that was modestly orientation
selective (OB � 0.19). The ZMN was also compressive, with
a power law of 0.7. Most previous studies have reported
expansive rather than compressive output nonlinearities of
early cortical neurons (but see Xing et al. 2011).

Three categorical types of RF models. From inspection of
many RF models such as those above, we were most surprised
by the wide variation in their orientation selectivity and in their
ZMN power, suggesting that the neurons might be categorized
in terms of these properties. To quantitatively examine this
hypothesis, the OB and ZMN values for the entire sample of
simple cells are shown in Fig. 6. A histogram of OB values
(Fig. 6A) has a broad range and includes many nonoriented
cells with OB � 0.1 as well as oriented cells with larger OB
values. The distribution appears bimodal, which is confirmed
formally (P � 0.03). In Fig. 6B, a histogram of ZMN power
values has many neurons with expansive values (a � 1.5–2.5)
but also has numerous compressive values (a � 1.0, as low as
0.2). Furthermore, the ZMN power values also exhibit a
significantly bimodal distribution (P � 0.03). Of all the metrics
describing the RF models and spiking behavior examined here,
these were the only two that exhibited bimodal distributions
that were statistically significant.

In a scatterplot of the ZMN power exponents against the OB
values (Fig. 6C), the neurons appear to be grouped into three
distinct clusters. To objectively verify the number and distinct-
ness of these apparent clusters, a GMM clustering algorithm
(McLachlan and Basford 1988) (see METHODS) was performed
on the OB and ZMN power exponent values of our sample.
GMM models with varying numbers of clusters (NC) ranging
from 1 to 4 were compared using AIC and BIC (Akaike 1974,
1998) (see METHODS). The lowest AIC and BIC values were
obtained with a GMM with NC � 3, objectively confirming the
optimal number of clusters to be three.

These three distinct categories of simple cells revealed by
the GMM clustering analysis are illustrated in Fig. 6D as
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dashed line ellipses indicating contours at two standard devi-
ations from the cluster centers. These categories will be re-
ferred to as nonoriented (nonOri) cells, expansive oriented
(expOri) cells, and compressive oriented (compOri) cells. The
compOri cells dominate lower ZMN power values, while the

nonOri and expOri cells have higher, overlapping ZMN power
values but distinct ranges of orientation bias. Note that the
apparent delineation of our three categories (Fig. 6D) appears
implausibly sharp, i.e., there are almost no “intermediate”
cases—however, it must be remembered that the GMM is a
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probabilistic model, such that the dashed ellipses in Fig. 6D are
only indicative of the probabilities of neurons within them
belonging to the corresponding cluster.

It is conceivable that our measure of orientation bias might
be subject to spurious bimodality (Mechler and Ringach 2002)
because of its functional form. Therefore we also analyzed the
orientation dependence by finding the best-fitting von Mises
function (Eq. 3), which is commonly used to describe circular
data (Batschelet 1981; Swindale 1998). A scatterplot like that
of Fig. 6C, but using the width parameter w of the best-fitting
von Mises function for each neuron, also revealed the same
three clusters. A GMM clustering analysis again indicated
three clusters as optimal, based on AIC and BIC.

Our analysis has utilized only responses from neurons clas-
sified as simple-type cells, but there is evidence that visual
cortex neurons may actually lie on a continuum of simplelike
to complexlike response properties, varying in the relative
contributions of linear and nonlinear response components
(Chance et al. 1999; Fournier et al. 2011; Priebe et al. 2004).
This idea raises the possibility that some cells in our sample
might be relatively more complexlike than others, and thereby
provide differing results in our analysis, which only reveals the
quasi-linear component. For example, the compOri cells might
be somewhat complexlike on such a continuum, with our
analysis only revealing the residual linear component. To
address this possibility we utilized the responses to optimal or
near-optimal drifting sine wave gratings, which were available
for 184 of the 212 neurons in our sample. This was frequently
possible because our penetrations were approximately orthog-
onal to the cortical surface, and therefore aligned with the
columnar organization for grating tuning properties. We mea-
sured the ratio of modulated to unmodulated discharge
(AC-DC ratio), which classically gives values greater than
unity for simple-type cells (Skottun et al. 1991). The distribu-
tion of these values was much like that expected for simple-
type cells, with most values between 1.0 and 2.0. The distri-
butions for each type were not evidently different, and none of
them was significantly bimodal (Hartigan dip test). Scatterplots
of the AC-DC ratios against orientation bias or the exponent of
the fitted output nonlinearity (Fig. 7, B and C) did not reveal
any apparent clusters, and the average AC-DC ratios for the
three types (Fig. 7A) were not statistically significantly differ-
ent from one another. Consequently, it appears that our three
categories do not exhibit any systematic relationship to simple-
like vs. complexlike behavior.

A possible inadequacy of our model architecture is the very
simplified output nonlinearity function, which was technically
advantageous because it has only one free parameter. It might
be that the compOri cells are actually similar to the expOri
cells, but have negative thresholds, and the half-wave rectifi-
cation in our function clips relevant inputs below zero—see,
for example, Bonin et al. (2006). Another such possibility is
that there might be an offset y0 to the output, notwithstanding
our having initially subtracted out the spontaneous activity. In
general, variations in either of these offset values might affect
our estimates of power law exponents (Mechler and Ringach
2002). To evaluate these ideas, we refit the relationship be-
tween measured responses vs. responses predicted by the
estimated linear filter (STRF), as described in METHODS, with a
rectified power law having an input offset, T, and also an
output offset, y0, as additional free parameters:

Fig. 5. Example RF models. A–F: examples of estimated space-time receptive field models for 6 neurons. Each panel depicts results for 1 neuron, showing
spatiotemporal receptive fields (STRFs) across 8 time lags (0.0 ms to 93.3 ms) and estimated output nonlinearity (half-power law). A: a STRF with adjacent,
right oblique ON and OFF regions resembling a Gabor-like structure. The cell has strong orientation selectivity, with an OB of 0.31 as well as an zero-memory
nonlinearity that is expansive (power exponent a � 2.4), and raw/explainable variance accounted for (VAF) of 26.4% and 48.7%, respectively. B: a STRF with
a horizontally oriented ON region and flanking crescent-shaped OFF lobes. The cell has a weak phase reversal and slight progression of spatial phase across time
lags as well as exhibiting strong orientation selectivity, with an OB of 0.25, an expansive output nonlinearity (power exponent 1.5), and raw/explainable VAFs
of 25.3% and 34.8%. C: a STRF with ON-center, concentric OFF-surround structure and a clear phase reversal at later time lags. The cell shows negligible
orientation selectivity, with an OB of 0.05, an expansive nonlinearity with a power of 1.4, and raw/explainable VAFs of 40.9% and 60.8%. D: a somewhat noisier
OFF-center, ON-surround STRF with a strong phase reversal at later time lags. This cell shows no orientation selectivity, with an OB of 0.01, an expansive
nonlinearity with a power of 2.0, and raw/explainable VAFs of 25.1% and 45.0%. E: a STRF that is orientation selective, with an orientation bias (OB) of 0.33,
a compressive nonlinearity of 0.5, and raw/explainable VAFs of 16.1% and 26.7%. F: a STRF with a somewhat nondescript spatial structure. The cell is weakly
orientation selective, with an OB of 0.19, a compressive nonlinearity power exponent of 0.7, and raw/explainable VAFs of 14.7% and 27.1%.

Fig. 6. Orientation bias and output power law exponent values for simple cells.
A: histogram of orientation bias (OB) values, showing a bimodal distribution.
Cartoon RFs reflect degree of oriented RF structure corresponding to OB
values. B: histogram of nonlinear power exponent (a) values, also showing a
clear bimodal distribution. C: nonlinear power plotted against OB, with each
data point representing a single neuron, showing apparent clustering into 3
distinct groups. D: scatterplot as in C, with existence of 3 distinct groups
objectively verified by Gaussian Mixture Model (GMM) clustering. Dotted
line ellipses indicate fitted Gaussian distributions for each cluster at 2
standard deviations from cluster centers. The 3 categories are referred to as
nonoriented (nonOri) cells, expansive oriented (expOri) cells, and compressive
oriented (compOri) cells. Data points depicted by asterisks indicate 6 example
cells shown in Fig. 5.
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y � y0 � �L�x� � T	n (13)

The fitted values of input offset T had mean � SE values of
�0.00231 � 0.00466 for nonOri cells, 0.00336 � 0.0066 for
expOri cells, and 0.00198 � 0.00777 for compOri cells (Fig.
7D). The mean values of T were not significantly different
between any of the three cell types. For each of the three types,
the mean T values were not significantly different from zero.
The fitted values of output offset y0 had mean � SE values of
0.01046 � 0.00662 for nonOri cells, 0.00776 � 0.00897 for
expOri cells, and 0.00984 � 0.00974 for compOri cells (Fig.
7E). The mean values of y0 were not significantly different
between any of the three cell types. Furthermore, the fitted
power law exponent values obtained with or without inclusion
of the input and offset parameters are highly similar (Fig. 7F).
Consequently, we retained our use of the fitted power law
exponents from the simpler model in which T and y0 are zero.

It is conceivable that categorically distinct RF types, partic-
ularly expansive vs. compressive output nonlinearities, could
be an artifact of spontaneous fluctuations in overall responsiv-
ity that are discrete, for example, up and down states (Wilson
and Kawaguchi 1996). However, up/down states are short,
with transitions occurring in fractions of a second, while the
recordings performed here are on the order of an hour. Each
recording would therefore contain many hundreds of up/down
transitions, and their effects would be averaged out. Therefore
it seems highly unlikely that our distinct RF categories could
be artifacts of such rapid state fluctuations. There might also be
slow changes, for example, due to shifts in depth of anesthesia,

which could alter the percentage of time that the cortex is in
desynchronized or synchronized states having different levels
of responsivity to stimuli (Harris and Thiele 2011). However,
such changes would not be correlated with the times of our data
acquisition runs, so that any given run would have a random
mix of the two states, thus making a bimodal population
distribution unlikely. In addition, we observed a number of
instances in which neurons exhibiting both expansive and
compressive output nonlinearities were simultaneously re-
corded on the same multielectrode penetration, sometimes
even at the same recording site. Thus in general it seems very
unlikely that our categorical separation of cell types is an
artifact of fluctuations in brain state.

Although these simple cell categories were distinct based on
their orientation bias and output nonlinearity, we also exam-
ined other possible dimensions across which these neurons
might show distinct responses.

Spatial response properties. The estimated RFs varied
widely in size, as can be seen in the examples of Fig. 5 (note
scale bars, bottom left). To quantitatively analyze this variation
in spatial scale, we extracted the optimal SF from each RF map
at peak latency, as described in METHODS (Eq. 3). Average
values of optimal SF of the three categories of simple cells are
shown in the bar chart of Fig. 8A. The distributions of the
values can be visualized from the superimposed points on each
bar, which indicate values from individual neurons. Overall
these values for the oriented types (0.16 � 0.02 cycles/° for
expOri and 0.14 � 0.01 cycles/° for compOri) conform
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broadly to those in the literature for oriented cells in cat A18
(Mareschal and Baker 1998; Movshon et al. 1978; Song and
Baker 2006). However, the nonOri cells have a substantially
higher average optimal SF (0.46 � 0.02 cycles/°), which is
significantly larger than for expOri (P � 6.8 � 10�16) and for
compOri (P � 7.2 � 10�25).

We wondered whether SF bandwidth contributed in any way
to our categorical distinctions in a manner similar to that of
orientation bias. One might expect nonOri cells, which have
spatial RF structures resembling those found in lateral genic-
ulate nucleus (LGN), to be more broadly tuned for SF than
expOri cells with their Gabor-like spatial structure. In addition,
the varied spatial RF structures of the compOri cells might give
them a broader range of SF bandwidths. However, the mea-
sured SF bandwidth values (see METHODS, Eq. 3), shown in Fig.
8B, do not uphold these expectations—the average SF band-
widths are not significantly different across the three categories
(2.2 � 0.11 octaves for nonOri, 2.0 � 0.14 for expOri, and
1.8 � 0.13 for compOri), in each case being broadly distrib-
uted across a range from �0.5 to 4 octaves, in broad agreement
with values in the literature for cat A18 (Mareschal and Baker
1998; Movshon et al. 1978).

A RF property that might be related to SF bandwidth is the
relative strength of ON and OFF regions in the STRF—in a
linear model, an imbalance would enhance responses at low
SFs. Also, one might expect nonOri cells to be unbalanced if
they are LGN like (i.e., LGN cells often have surrounds weaker
than centers), while Gabor-like expOri cells would be roughly
balanced. ON/OFF dominance was quantified with the ZBI,
described in Eq. 4 in METHODS. A ZBI with a value of 0 signifies
balanced ON and OFF zones, while positive or negative values
represent ON-dominated or OFF-dominated RF estimates, re-
spectively. The means and distributions of ZBI values for the

three cell categories are shown in Fig. 8C. As expected, the
majority of both oriented types are tightly clustered around 0
(expOri � �0.0054 � 0.013, compOri � 0.015 � 0.012),
indicating that the majority of these RFs are roughly balanced.
The latter result suggests that the wide range of SF bandwidths
for the oriented types (Fig. 8B) was not due to variation in
ON/OFF imbalance. The ZBI values for nonOri cells, however,
reveal a wide range of degrees of ON/OFF imbalance, although
the average (�0.0087 � 0.032) is close to 0.

Another spatial RF property of potential relevance is aspect
ratio, i.e., length to width, in relation to the preferred orienta-
tion. Conceivably, expOri and compOri cells could have a
range of aspect ratios, while nonOri cells should have values of
about unity. Measured aspect ratios, calculated from variance
maps with the procedure described in METHODS (Eqs 6–9), are
shown for the three cell types in Fig. 8D. The average aspect
ratios are indeed very close to unity for the nonOri cells
(1.059 � 0.00414), with very little scatter. The expOri cells
have higher aspect ratios (1.13 � 0.0202) that are significantly
greater than the nonOri cells (P � 2.2 � 10�6), and the
compOri cells are also have higher values (1.18 � 0.0207) that
are significantly greater (P � 3.6 � 10�11). The oriented types
show substantial variation among individual neurons, consis-
tent with previous reverse correlation results (Jones and Palmer
1987; Ringach 2002).

Temporal and spatiotemporal response properties. A similar
approach of using spectra of space-time RF maps to estimate
temporal frequency response properties was not employed,
since temporal response properties of visual cortical neurons
are quite nonlinear (Dean and Tolhurst 1986). Instead, we
investigated time-domain properties of response latency (time
to peak response) and duration using temporal profiles of
space-averaged variance maps (Fig. 3, A and B).
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Fig. 8. Spatial receptive field properties for the 3 types of
simple cells, shown as bar charts with superimposed
symbols depicting values from individual neurons. A:
optimal spatial frequencies obtained from the analysis
shown in Fig. 2. Average optimal SF is significantly
higher for nonOri than for expOri or compOri cells. B: SF
bandwidths obtained from the analysis shown in Fig. 2.
Average SF bandwidths (octaves) are not significantly
different for the 3 cell types. C: zero balance index (ZBI),
with values that are negative, zero, or positive represent-
ing OFF-dominated, zero-balanced, and ON-dominated
RFs. ZBI values for the 3 cell categories all have average
values near 0. D: aspect ratios estimated by the method
shown in Fig. 3. In this and subsequent figures, data
points represent measurements from individual neurons,
bars indicate means, and error bars indicate SE values,
with results for nonOri cells in black, expOri in red, and
compOri in green.
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Because of the spatial structure of the nonOri cells, one
might expect them to be more directly LGN driven, and
therefore likely to have shorter latencies. The results (Fig. 9A)
show that nonOri and expOri cells have similar, relatively low
latencies (population averages of 32.8 � 1.5 ms and 36.9 � 3.0
ms, respectively). All three distributions are quite skewed, with
the values for compOri cells spread across a particularly wide
range of 25–150 ms, with a higher average (64.1 � 5.0 ms) that
is significantly different from that of the other two types (P �
3.1 � 10�11 with nonOri, 3.4 � 10�5 with expOri). The
average latency (including all 3 of our classes) is 44.6 ms,
which is congruent with the average value of 40 ms reported
for A18 by Dinse and Kruger (1994).

Some of the STRF maps were distributed across several
temporal lags, e.g., Fig. 5C, while others were more sharply
confined to a few lags, as in Fig. 5A. We quantified this
property as response duration, estimated as the time between
the 1/e of peak temporal envelope values in temporal profiles
of variance maps (see METHODS). Similar to response latency,
one might expect that if nonOri cells were LGN like, they
might have faster temporal dynamics and therefore shorter
response durations. The results (Fig. 9B) revealed that most
nonOri cells have durations ranging from 25 to 150 ms (78.1 �
3.9 ms), while the two oriented types additionally included
values up to 300 ms. The expOri and compOri cells have
roughly equal average durations (116 � 10.6 ms and 130 � 9.9
ms, respectively), in each case significantly greater than the
nonOri cells (P � 5.8 � 10�5 with expOri, P � 9.3 � 10�8

with compOri). The average duration, including all three types,
is 108 ms, which is substantially smaller than the value of 284
ms found for cat A18 neurons by Dinse and Kruger (1994).
This difference might have been due to the latter authors’
estimation of temporal dynamics from simple step responses.

A direction selectivity index (DSI) was used to quantify
space-time nonseparability underlying direction selectivity, as
described in METHODS (Eq. 11)—its value ranges from zero
(separable, no direction selectivity) to unity (maximally non-
separable, perfect direction selectivity). As seen in Fig. 9C, the
DSI values for nonOri cells are clustered at very low values
(mean 0.073 � 0.005), indicative of space-time separability
and a lack of direction selectivity, which is not surprising in
view of their isotropic RF structure. The expOri and compOri
cells, on the other hand, have a much wider range of DSI

values, from near zero to almost unity, indicating highly
varying degrees of directionality. The average DSI values for
expOri (0.26 � 0.03) and compOri (0.24 � 0.03) are signifi-
cantly greater than for nonOri cells (P � 6.6 � 10�16 with
expOri, 6.1 � 10�12 with compOri).

Spiking response properties and spike waveforms. In addi-
tion to RF properties, visual neurons vary considerably in
statistical properties of spiking (Chen et al. 2008; Lesica et al.
2007). Here we examine the extent to which the three cell types
might differ in statistical properties of spiking, including both
simple measures such as spontaneous activity and responsivity
and more complex statistics such as sparseness and reliability.

Measured values of responsivity, quantified as the average
spike frequency during NI stimulus presentations (minus the
average spontaneous activity), are shown in Fig. 10A for the
three types. The majority of cells had responsivities ranging
from 1 to 10 spk/s, with a minority of the sample having values
up to 30 spk/s. One might expect that the lower stimulus
selectivity of nonOri cells would result in more vigorous visual
responses compared with the other two classes—this expecta-
tion is somewhat fulfilled in that the average responsivity for
nonOri cells (8.03 � 0.76) is greater than for expOri cells
(2.59 � 0.21). However, the average compOri responsivity
(7.46 � 0.90) is also similarly greater than for expOri cells.
These differences are significant for both nonOri (P � 3.0 �
10�6) and compOri (P � 9.3 � 10�6) types.

The greater responsivity of compOri than expOri cells sug-
gests that the latter operate in the low end of a typical
sigmoidal-shaped response function, thereby manifesting an
expansive ZMN. The compOri cells respond more vigorously,
and so might be operating at the high end of their dynamic
range, giving a compressive ZMN. However, there is consid-
erable overlap in the distributions of responsivities, so such a
factor could only be a partial explanation.

Spontaneous activity was measured as the average number
of spikes during the mean luminance blank screen that pre-
ceded each stimulus ensemble. The results for the three types
(Fig. 10B) again show lower average values for the expOri
cells (0.83 � 0.14 spk/s) than for the compOri (5.80 � 0.64)
or nonOri (4.28 � 0.52) cells, with both differences significant
(P � 1.3 � 10�9 and P � 1.3 � 10�5, respectively). The
distributions of values for the nonOri and compOri cells are
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both highly skewed, with a long tail of large values, similar to
the responsivity distributions in Fig. 10A.

Sparse coding helps conserve metabolic resources (Laughlin
et al. 1998) and is an integral element of theories of efficient
coding of NIs (Olshausen and Field 1996; Rehn and Sommer
2007; Vinje and Gallant 2000). We employ an index of lifetime
sparseness of spike trains (METHODS, Eq. 12), which ranges
from zero (equal response to all stimuli) to unity (response to
only 1 stimulus image). Since nonOri cells lack orientation
selectivity, one might expect them to have lower sparseness
values than the other two types. The results, in Fig. 10C, reveal
average values for nonOri (0.81 � 0.01) that are lower than for
expOri (0.94 � 0.01), by a significant margin (P � 2.9 �
10�9). The compOri cells have an average SI (0.80 � 0.02)
that is also significantly lower than that for expOri (P � 3.8 �
10�15). Sparseness values for the expOri cells are not only
greater but also more tightly clustered compared with the wider
variation in the other two types.

The trial-to-trial reliability of a neuron’s firing to a given
stimulus image was measured as a ratio of signal to noise
spectral power (Borst and Theunissen 1999), as described in
METHODS. As shown in Fig. 10D, the reliability ratios are on
average greater for nonOri cells (0.62 � 0.05) than for either
expOri (0.49 � 0.03) or compOri (0.45 � 0.03) types, with
both differences being significant (P � 0.02 and P � 0.01,
respectively). These values are highly skewed for the nonOri
cells, with a long tail of high values.

A different kind of suggested categorical distinction of
cortical cells has been between those with thin (narrow) and
thick (broad) spike widths, thought to correspond to inhibitory
interneurons and excitatory pyramidal cells, respectively (Ami-
tai and Connors 1995; McCormick et al. 1985)—however,
note that several exceptions to this correspondence have been

demonstrated (e.g., Dykes et al. 1988; Foehring et al. 1991;
Gray and McCormick 1996; Kawaguchi and Kubota 1993;
Vigneswaran et al. 2011). We employed two measures of spike
width (Chen et al. 2008; Frank et al. 2001; Mitchell et al.
2007)—average FWHM of the spike waveform and time from
peak to valley. Using either measure, we did not observe
significantly bimodal distributions in our sample (Fig. 11, A
and B) and so were not able to categorize our neurons on that
basis. We also examined the distributions of spike widths for
each of our three cell types (Fig. 11, C and D) but found similar
distributions and average values that were not significantly
different. Thus it is not evident that our three types bear any
straightforward relationship to previously reported spike width
categories.

Overview of response properties. There may well be sub-
types within each of our three categories (see DISCUSSION).
Several of the distributions in the bar scatter graphs discussed
above exhibit substantial scatter, demonstrating an apparent
lack of homogeneity, and in some cases seem suggestive of
possible bimodal distributions (e.g., compOri in Fig. 9, A and
B, nonOri in Fig. 11, C and D). However, none of the indexes
formed within-type distributions that had statistically signifi-
cant bimodality.

Another caveat about our analysis is that it was based on
imperfect estimates of RF properties. Our initial assessment of
the quality of RF estimates was to measure how much of the
response variance of a holdback data set could be predicted
(VAF; see METHODS). The estimated RF models here could
typically account for �15–25% of the response variance, with
the population average “raw” VAFs greatest for nonOri cells
(24.9 � 2.1%), intermediate for expOri (20.2 � 0.9%), and
lowest for compOri (15.1 � 1.3%)—these values are in about
the same range as found in previous system identification
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Fig. 10. Spiking response metrics. A: average responsivities
are significantly higher for nonOri and compOri cells than
for expOri cells. B: spontaneous activity (response to blank
screen) values are significantly higher for nonOri and
compOri than for expOri cells. C: lifetime sparseness index
(selectivity) values, showing average values significantly
higher for expOri than for nonOri and compOri types. D:
reliability (signal to noise) ratio values, whose average for
nonOri is significantly greater than for expOri and compOri
cells. *P � 0.05.
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studies of visual cortex neurons (e.g., David and Gallant 2005;
Willmore et al. 2010). However, the amount by which these
values are less than 100% can be due both to neuronal response
variability (“noise”) and to inadequacies of the assumed LN
model architecture. To try to discount the effect of response
noise, we used a noise ceiling analysis (METHODS) to obtain an
“explainable” VAF—these values (Fig. 12A) are typically
�30–45%. The average explainable VAF for nonOri cells
(44.6 � 2.6%) was significantly greater than for expOri cells
(35.4 � 1.4%), which in turn was significantly greater than for
compOri cells (29.6 � 2.6%). Each of these differences was
significant (P � 0.04 and P � 0.003, respectively).

We wondered why we noted clear distinctions between
simple cell types while other research groups have reported a
continuum in response properties. An important factor may
have been our use of multielectrodes and post hoc spike
sorting. Figure 12B shows the numbers of cells in each cate-
gory isolated with either a window discriminator or post hoc
off-line sorting (OFS) with single-channel or multichannel
electrodes. Our single-channel recordings with a window dis-
criminator, as used in most previous studies, were heavily
biased toward oriented cells (i.e., either expOri or compOri).
Single-channel recordings with off-line spike sorting also iso-
lated a much larger fraction of orientation-selective cells.
Using multichannel electrodes with off-line sorting, on the
other hand, revealed large numbers of nonoriented RFs in
addition to the oriented types. These comparisons suggest that
the electrode type was not important for finding the two
oriented types but that the encounter rate of nonOri cells was
much greater for multichannel electrode recordings—this
might have been due to electrode sampling characteristics or to

the lack of reliance on a “search stimulus” to look for respon-
sive cells (see DISCUSSION).

Another concern is that many or all of our nonoriented RFs
might be measured from thalamic afferents, which have many
similarities to the nonOri cells, rather than from cortical neu-
rons. If this were the case, one would expect the measured
spike amplitudes to be consistently smaller for the nonOri
group than for the other categories. The distributions of spike
amplitudes for each of our three categories are shown in Fig.
12C, for the cells that were detected by spike sorting. There is
no statistically significant difference in the spike amplitudes for
the three types, and the broad dispersions of amplitudes also
appear similar.

Thalamic afferent terminals should be seen only within
restricted laminae (LeVay and Gilbert 1976), but instead we
found them at a wide range of positions (depths) along the
linear arrays. Unfortunately, the small pad sizes (177 �m2) of
our multielectrodes, chosen for single-unit selectivity, yielded
local current source density results that were too noisy to be
trustworthy. We instead made approximate estimates of depth
based on microdrive readings and the pad spacing of 100 �m,
for a subset of the 32-channel linear-array penetrations (Fig.
12D). While this analysis does not provide an accurate laminar
localization, it shows that the nonOri cells (as well as the other
types) were encountered across the full range of depths, and
not localized within limited sets of depths as would be ex-
pected if they were thalamic afferents.

While the type of electrode seems to have been important for
observing numerous nonoriented RFs, those factors were evi-
dently irrelevant to our finding of distinct expansive vs. com-
pressive output nonlinearity types (expOri and compOri; Fig.
12B). Another important methodological difference from most
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2569DISTINCT RECEPTIVE FIELD TYPES IN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00659.2015 • www.jn.org



previous studies was our use of NI stimuli, which can some-
times reveal RF properties not evident when using conven-
tional stimuli (David et al. 2004). To assess whether the type of
stimuli might have played a role in the measured output
nonlinearities, we compared the ZMN power law exponent
values of the estimated RFs for those neurons on which we had
also tested more conventional, synthetic stimuli as part of our
previous study (Talebi and Baker 2012). Figure 13A shows the
power law exponents for neurons on which we also had
collected responses to WN as well as NIs. The average values
are higher (more expansive) for WN (1.89 � 0.11) than for NIs
(1.50 � 0.13), and the difference is significant (paired t-test,
P � 6.4 � 10�10, d.f. � 44). Examination of the scatterplots
reveals that power exponents less than unity (compressive) are
seen only for 3 of the 45 WN data sets, with values only
slightly below unity (range 0.90–0.94). This difference is
illustrated further in histograms of the power law exponents for
the two stimuli (Fig. 13, C and E), which are significantly
bimodal for NI stimuli (P � 0.02) but not for WN. The
scatterplot in Fig. 13G shows the relationship between power
law exponents measured with WN vs. NIs—the values are
highly correlated (R � 0.92) but generally higher for noise than
for NIs. Note that there is a particularly systematic upward
shift for neurons with compressive (�1) values for NIs, which
acts to erode the bimodal distribution seen with the latter
stimuli.

A similar comparison of those neurons on which we also had
collected responses to sparse random short bars (SB) shows
(Fig. 13B) significantly higher average values (paired t-test,
P � 1.2 � 10�10, d.f. � 44) for SB (1.89 � 0.11) than for NI

(1.55 � 0.12). Again, compressive values are found much
more often for the NI responses, with a significantly bimodal
distribution for NI (Fig. 13D, P � 0.04) but not for SB (Fig.
13F), and only a minority (8 of 45) values (ranging from 0.81
to 0.95). A scatterplot of power law exponents measured with
SB vs. NI (Fig. 13F) again shows a high correlation (R �
0.95), with a systematic upward shift of small values that
prevents bimodality of the distribution.

These results are consistent with previous studies of simple-
type cortical cells that found only expansive output nonlineari-
ties with sparse SB (Gardner et al. 1999) or WN (Anzai et al.
1999). Thus it appears likely that our observation of compres-
sive output nonlinearities, and a distinct category of compOri
cells, may have been due to our use of NI stimuli.

Our simple cell categories are established on the basis of
clear differences in orientation selectivity and output nonlin-
earity shape (Fig. 6). In addition, the population average values
of most of the examined RF and spiking indexes are signifi-
cantly different across some or all of the cell types—these
differences are summarized in Table 1. Also noteworthy are
the measures that show no significant relationship with the
three cell types: SF bandwidth, ZBI, and spike width.

DISCUSSION

We have used system identification techniques and NI stim-
uli to reveal a greater diversity of RF properties in early visual
cortex than previously described. Our main finding is that
within this diversity we could delineate distinct classes of
simple-type cells, based on orientation bandwidth and shape of
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Fig. 12. Predictive robustness of receptive field models
and distributions with types of recordings. A: variance
accounted for (VAF) values, indicating ability of re-
ceptive field models to predict responses to a holdback
validation data set. VAF values range from 0 (no
correlation between predicted and measured response)
to 100% (perfect prediction). Average explainable
VAF values (i.e., incorporating a noise ceiling analy-
sis), shown here, are highest for nonOri cells, interme-
diate for expOri, and poorest for compOri. B: relation-
ship of cell categories to spike sorting method and
electrode type. Bar graph illustrates distribution of cell
categories using either a window discriminator (Win.
Disc.) or post hoc off-line sorting (OFS) with single-
channel or multichannel electrodes. Single-channel re-
cordings with a window discriminator are heavily
biased toward oriented cells (i.e., either expOri or
compOri). Single-channel recordings with OFS also
isolated a much larger fraction of orientation-selective
cells. Using multichannel electrodes with OFS, how-
ever, reveals nearly equal numbers of nonoriented and
oriented cell types. C: spike waveform amplitudes of
sorted units for each of the 3 cell types, which were not
significantly different from one another. D: distribu-
tions of depths at which cells in the 3 categories were
encountered, estimated from electrode penetration
depths and spacing of recording sites along linear-
array multielectrodes. The average depths are not sig-
nificantly different, but cells from each category are
found across the full range of depths. *P � 0.05.
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Fig. 13. Measured output nonlinearities for different
types of visual stimuli. A: values of power law expo-
nents for RF models fit to responses from neurons on
which we collected responses to both natural image
(NI) and white noise (WN) stimuli. Power law expo-
nents are significantly greater for WN than for NI,
with compressive values being frequently seen with
NI but rarely with WN. B: same comparison for
neurons on which sparse short bar (SB) as well as NI
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exponents are significantly smaller for NI than for
SB, with the latter again having less tendency to
compressive values. C and E: histograms of power
law exponents for NI and WN responses, which are
significantly bimodal only for NI. D and F: same as
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icantly bimodal only for NI. G and H: scatterplots of
power law exponents obtained from WN (G) and SB
(H) stimuli against exponents measured with NI stim-
uli—both are highly correlated (R � 0.92 and 0.95,
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values that prevents bimodality of distributions for
the artificial stimuli. *P � 0.05.
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output nonlinearity, each of which was relatively numerous.
Examples of each of these classes of simple cells have been
reported previously but not demonstrated to comprise categor-
ical types. The expOri cells, with an oriented Gabor-like spatial
structure and expansive nonlinearity, correspond best to typical
previous descriptions of neurons in early visual cortex (e.g.,
Anzai et al. 1999). The other two categories were seemingly
more novel.

Nonoriented receptive fields. Orientationally isotropic RFs
are well known in primate V1 and have sometimes been
reported in cat A17 (e.g., Hirsch et al. 2003; Martinez et al.
2005). An important concern is that our nonOri cells might
actually be axonal recordings of thalamic afferent terminals.
While we cannot rule out such a possibility based on these
findings, it seems unlikely that most of all of our nonOri cells
are thalamic afferents, because of their numerosity, their spike
amplitudes (Fig. 12C), and the wide range of depths at which
they were encountered (Fig. 12D). Axonal recordings would be
most likely with high-impedance electrodes such as glass
micropipettes, but our highest percentage of nonOri cells was
recorded with relatively low-impedance multielectrode arrays
(Fig. 12B). In addition, the spike waveforms were not notice-
ably different from those of the other two types—all were
biphasic or triphasic, with the first phase negative-going—
characteristic of somatically rather than axonally recorded
spikes (Petrusca et al. 2007). Also the nonOri cells’ center and
surround subfields were on average zero-balanced (Fig. 7C),
whereas LGN RFs often have weaker surrounds than centers.
Consistent with this, the nonOri cells were band pass in SF,
with bandwidths that were similar to those of oriented RFs
(Fig. 7B)—in contrast, LGN cells often have broader band-
widths, with very shallow low-frequency rolloffs.

Since our RF estimation employed an LN model architec-
ture, it is conceivable that in these cases we might be fitting a
(nonoriented) linear component of complex-type cell re-
sponses. However, this was not the case, since the AC-DC
ratios of grating responses were almost all greater than unity of
nonOri cells (Fig. 7), indicating that they were not complex-
type cells. Also, one would then expect the RF models from
nonOri cells to be particularly poor at predicting responses, but
in fact the nonOri cells exhibited the best prediction VAFs of
the three types (Fig. 12A). These VAFs are far too high for
what neurons with complex-type RF properties can deliver
with this type of quasi-linear model-based analysis.

Why do we observe so many nonoriented RFs, when most
previous studies in cat visual cortex did not? This difference is
unlikely to be due to our use of NI stimuli, since we also found

very similar nonoriented RFs in response to WN or short
oriented bars (Talebi and Baker 2012, Fig. 8). A possible
reason for the much greater prevalence of nonoriented RFs
might be that in the cat they are much more numerous in A18
than in A17 and that most previous studies of cat visual cortex
were in A17. Probably a relevant factor is also our use of
multielectrodes, which yielded a much greater percentage of
nonOri cells than conventional single-channel electrodes (Fig.
12B) used in previous studies. The multielectrodes may have
different recording characteristics, but we suspect the most
important consequence may be an associated sampling effect:
most of our recordings with multichannel probes used “blind”
recording followed by post hoc spike sorting rather than the
traditional use of an oriented search stimulus for initial assess-
ment of individual RFs (Koster and Olshausen 2013). The
strong surrounds of many of the nonOri cells (Fig. 8C) would
diminish their responses to bars or edges, thereby making their
visual responsivity more difficult to notice. Indeed, having
been alerted to this possibility, we have subsequently been
better able to find nonoriented RFs using manual search stim-
uli, by employing small flashed spots for neurons that seemed
unresponsive to bars.

Compressive output nonlinearities. Previous quantitative
analyses of early cortical simple-type cells using LN models
have usually indicated expansive rather than compressive out-
put nonlinearities (Anzai et al. 1999). Compressive output
nonlinearities have been reported in a minority of early cortical
neurons’ responses to gratings (Xing et al. 2011), though not as
part of a bimodal distribution of function shapes. In our study
compressive output exponents were responses to NI but not to
WN or SB stimuli (Fig. 13) that have been used in many of the
previous studies. The dependence of the RF model on the stim-
ulus type suggests inadequacy of the model architecture (David
et al. 2004) and is consistent with these cells giving the lowest
explainable VAFs of our three types (Fig. 12A). A future
research direction will be to find ways to estimate more
elaborate (nonlinear) model architectures that may better cap-
ture these neurons’ response properties.

The dependence on stimulus type and the low VAFs might
suggest that the compOri cells are relatively more complexlike
than those in the other categories, i.e., having both linear and
nonlinear response components. If so, then one would expect
cells with more compressive output nonlinearities to have
lower AC-DC ratios. However, in Fig. 7, the scatterplot of
power exponent vs. AC-DC ratio does not show any such
systematic relationship—the bar/scatter graph shows that
AC-DC ratios were similar for all three cell types.

Fournier et al. (2011) have demonstrated that the type of
stimulus can shift a cortical neuron’s responses from relatively
simplelike to more complexlike behavior. This finding raises
the possibility that cortical neuron responses might be simple-
like to gratings but more complexlike to NI, perhaps more so
for compOri than for expOri cells. Something like this is
conceivable, but our results nevertheless indicate categorically
distinct types of cells with respect to the degree to which such
a shift can occur.

Categorically distinct cortical receptive fields. Mechler and
Ringach (2002) demonstrated that a simple nonlinear transfor-
mation of a unimodal distribution (of values of a RF parameter)
could give rise to a bimodal distribution, suggesting that
bimodal distributions could result from the manner in which

Table 1. Average differences between the three types of simple
cells

nonOri expOri compOri

Optimal SF Higher Lower Lower
Aspect ratio Lower Higher Higher
Latency Shorter Shorter Longer
Duration Shorter Longer Longer
Direction selectivity None Mixed Mixed
Responsivity Higher Lower Higher
Spontaneous Higher Lower Higher
Sparseness Lower Higher Lower
Reliability Higher Lower Lower
VAF Higher Intermediate Lower
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responses are analyzed rather than reflecting a fundamental
distinction. Such a possibility cannot be ruled out entirely for
the bimodality of either the orientation bias (OB) measure of
orientation selectivity or the power law exponent—in this
respect our categorical scheme must remain provisional until
further evidence is available. However, an alternative analysis
of the orientation dependences using best-fitting von Mises
functions also revealed the same clustering. As discussed
above, it is entirely conceivable that the compressive output
nonlinearities that we observe might result from some other
underlying property, but that would not necessarily undermine
the idea of these neurons comprising a categorically distinct
type.

Several previous neurophysiological studies have consid-
ered early cortical neurons in terms of proposed types (e.g.,
Schiller et al. 1976), but most of these studies did not provide
objective evidence, such as bimodal histograms or cluster
analyses, that the proposed types were categorically distinct. A
notable exception is Willmore et al. (2010), who used NI
responses of macaque V2 neurons, analyzed with a wavelet
basis transformation, to reveal two major clusters of neurons
whose RFs differed in complexity of SF and orientation com-
ponents and amount of nonlinear suppression. It is tempting to
suppose their clusters might be related to ours, although this is
difficult to determine since their analysis was substantially
different and included complex- as well as simple-type RFs.

We believe that there are two main reasons why these
classes of cells have not been previously recognized. The first
reason, discussed above, is the combination of multielectrodes
and “blind” sampling, which avoids potential difficulties in
finding the nonOri cells with conventional manual search
stimuli. The second reason is our use of NI stimuli, which
reveal many neurons having compressive output nonlinearities
when simple artificial stimuli do not (Fig. 13). RF properties,
and the delineation of categories, clearly can depend on the
stimuli used to measure them. The complex properties of more
naturalistic stimuli are likely to provide a richer characteriza-
tion of RF properties. In the example here, the stimulus
dependence of compressive nonlinearities might be due to NI
having a broad, continuous range of contrasts, whereas the
artificial stimuli have a sharply limited range (binary for dense
noise, ternary for sparse bars).

Comparison of orientation bandwidth measurements from
previous studies is additionally complicated by the data sets
used to measure them. Most previous studies measured re-
sponses only at a very limited number of orientation values, as
part of a conventional tuning curve measurement. Orientation
bandwidth (OB) values from such measurements can be quite
different—for example, some neurons may give a good re-
sponse at only one tested value, thereby giving a very high OB
value, while the RF map from such a neuron (e.g., Fig. 2D) will
generate some responses at many nonoptimal values and thus
give a smaller OB value. It is possible that the limited number
of tested orientation values might have prevented observation
of a bimodal distribution of OB.

The LN model architecture underpinning our analysis is
unquestionably an incomplete description of cortical neurons’
RF properties, even for simple-type cells. For example, an LN
model does not account for surround modulation (Tanaka and
Ohzawa 2009) or second-order processing (Mareschal and
Baker 1998). It may nevertheless subsume and at least partially

describe many nonlinear neuronal properties—for example, a
compressive nonlinearity would capture some of the effects of
contrast gain control. However, it seems unlikely that a more
complex model architecture would then reveal a continuum of
RF properties—if anything, the errors inherent in an oversim-
plified (LN) model would tend to obscure categorical distinc-
tions rather than impose or accentuate them.

It is entirely likely that each of our categories may contain
multiple subtypes, particularly in view of the known diversity
in cellular morphology and molecular features (Brown and
Hestrin 2009; Kepecs and Fishell 2014), which presumably
evolved to support distinct physiological attributes. Within
each category, there is a considerable diversity in other prop-
erties (Figs. 7–10), and it may be that a larger sample size
could help reveal further divisions.

Computational functionality. The prevalence of nonOri and
compOri cells might suggest a revision of the standard model
of early cortical processing, consisting of a simple bank of
Gabor-like filters that are tuned to a series of orientations and
spatial frequencies, each having an expansive output nonlin-
earity to improve selectivity (Albrecht and Geisler 1991; Anzai
et al. 1999; Gardner et al. 1999). Computational modeling of
optimal overcomplete coding (Olshausen et al. 2009; Rehn and
Sommer 2007) suggests that a wider variety of filter shapes
may be necessary to provide an adequate “basis set” for
representation of natural images. From this point of view it
would be especially interesting to examine whether similar
such RF types occur in primary visual cortex (A17/V1).

A compressive output nonlinearity would seem undesirable,
since it would degrade selectivity—however, this may simply
reflect a greater engagement of a divisive gain control (Caran-
dini and Heeger 2012), which would retain rather than degrade
the filter selectivity. This idea is consistent with compOri cells
having greater responsivity (Fig. 10A) and a stronger degree of
nonlinearity as indicated by their lower VAFs (Fig. 12A).

The three RF types might embody a hierarchical progression
of more elaborated RF properties with increasing feature se-
lectivity, from the nonOri to expOri to compOri type. The
nonOri cells are similar to LGN cells not only in their orien-
tational isotropy but also in their small RF sizes (Fig. 8A) and
lack of direction selectivity (Fig. 9C), but unlike LGN cells
nonOri cells often have balanced RFs (Fig. 8C), giving them
SF bandwidths similar to oriented RFs (Fig. 8B). Taken to-
gether, these results are consistent with the idea that these cells
could act as an intermediate processing stage between LGN
afferents and cells with oriented RFs, for example, to provide
push-pull inputs that are contrast invariant (Troyer et al. 1998).
In general, nonoriented concentric RFs have surrounds that
increase in strength moving from the retina to the LGN and
then to cortex, exemplifying a progressive refinement of RF
properties with higher levels of processing. Also consistent
with a hierarchy is the progressive increase of nonlinearity, as
reflected in VAFs (Fig. 12A), from nonOri to expOri to
compOri type, which might reflect more elaborate RF
properties.

Compressive output nonlinearities have been proposed as
components of more complex nonlinear models of extrastriate
cortical processing (Kay et al. 2013; Mineault et al. 2012;
Nishimoto and Gallant 2011), in which they occur at an
intermediate stage prior to summation of an earlier layer of
filters. In that regard, compOri cells might function as early
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subunits for later-stage neurons, in the same or a higher brain
area. For example, a higher-level neuron might compute an
approximation to a multiplicative interaction or AND-gating
by compressive summation of early-stage neurons and a final
expansive nonlinearity (Gabbiani et al. 2004; Mineault et al.
2012).

Future directions. It will be important to examine whether
similar categories are found in primary visual cortex (A17) of
the cat, where most previous studies did not observe so many
nonoriented cells or compressive output nonlinearities—it is
conceivable that these properties might be unique to A18. Also,
it will be of much interest to conduct similar studies in primate
visual cortex, both V1 and V2.

Our categories are probably not homogeneous—i.e., we
anticipate that there may be subtypes within them. It may be
possible to delineate categorically distinct subtypes of visual
cortex cells by utilizing more elaborate model architectures
that can better capture additional nonlinear phenomena of
cortical neurons, such as divisive normalization (Carandini and
Heeger 2012), and by establishing relationships to cell types
defined by morphology, molecular markers, or intracellular
electrophysiological properties. In addition, it would be desir-
able to include complex-type cells, which are not amenable to
the type of analysis used here—use of a different kind of
model architecture and analysis that could be applied uni-
formly to cells having both simple and complex RF properties
(e.g., see Fournier et al. 2011) might reveal a more complete
characterization of discrete types of neurons.

With the increasing use of multineuron recording methods,
traditional tuning curve characterizations conducted in a man-
ner specific to each neuron are often not viable, making system
identification approaches using complex stimuli more attrac-
tive. This trend will have the benefit of helping avoid sampling
biases from the use of manual search stimuli, instead using
indiscriminate recording from many neurons simultaneously.
More natural stimuli might be particularly useful in this con-
text, especially for delineation of RF types. Different RF
categories presumably have distinct functional roles, e.g., sig-
naling different portions of the stimulus space, which could be
most effectively revealed by using naturalistic stimuli. Our
stimuli used here contained spatial images from natural scenes,
but they were presented without temporal correlation. An
important future improvement would be to employ stimuli that
are more fully “natural,” for example, to use image sequences
that simulate normally occurring eye movements (Baudot et al.
2013).

Laminar organization of these physiological cell types might
be expected since neuronal properties are known to vary across
laminae (e.g., Martinez et al. 2005; Murthy et al. 1998).
Morphologically defined cell types often occur in specific
laminae, and different cortical layers receive distinct inputs
from other brain areas as well as projecting to distinct targets.
In this study we did not have sufficient information for laminar
localization but noted a dispersion of the three cell types across
depths. Nevertheless, a useful future research direction might
be laminar localization of these RF types, for example, with
current source density analysis (Mitzdorf 1985; Pettersen et al.
2006). This effort might be especially worthwhile in species
such as macaque monkeys, which have more pronounced
laminar differentiation than observed in the cat.

Conclusions. Much of our understanding of the nervous
system’s functional circuitry has been built upon a framework
of neuronal taxonomy—physiologically defined cell types cor-
responding to distinct anatomical characteristics, for example,
in the retina (Masland 2012) or superior colliculus (Gale and
Murphy 2014). The mammalian visual cortex contains dozens
of neuronal cell types defined by morphology (Brown and
Hestrin 2009), responses to intracellularly injected current
(Nowak et al. 2003), or expression of specific markers (Kepecs
and Fishell 2014), but the functional roles of these cell types in
processing visual information are poorly understood. Lund and
Wu (1997) described nearly 40 morphologically distinct sub-
types of interneurons (e.g., chandelier, neurogliaform, basket
cells), and recently there has been notable progress toward
establishing correspondence of these types with physiological
roles (e.g., Adesnik et al. 2012; Kepecs and Fishell 2014). It
will be of great interest to explore whether the above cell types
bear a correspondence to RF types such as those described
here.

In conclusion, our findings indicate discrete, physiologically
defined types of cortical RFs that may have distinct functional
roles and connections. Establishing a full physiological taxon-
omy of types of neurons may be critically important to provide
a more well-defined framework upon which to build an incisive
understanding of cortical circuitry and function, and to con-
struct more meaningful computational models of visual signal
processing.
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