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Texture boundary segmentation is typically thought to reflect a comparison of differences in Fourier
energy (i.e. low-order texture statistics) on either side of a boundary. However in a previous study
(Arsenault, Yoonessi, & Baker, 2011) we showed that the distribution of energy within a natural texture
(i.e. its higher-order statistical structure) also influences segmentation of contrast boundaries. Here we
examine the influence of specific higher-order texture statistics on segmentation of contrast- and orien-
tation-defined boundaries. Using naturalistic synthetic textures to manipulate the sparseness, global
phase structure, and local phase alignments of carrier textures, we measure segmentation thresholds
based on forced-choice judgments of boundary orientation. We find a similar pattern of results for both
contrast and orientation boundaries: (1) randomizing all structure by globally phase scrambling the tex-
ture reduces segmentation thresholds substantially, (2) decreasing sparseness also reduces thresholds,
and (3) removing local phase alignments has little or no effect on segmentation thresholds. We show that
a two-stage filter model with an intermediate compressive nonlinearity and expansive output nonlinear-
ity can account for these data using synthetic textures. Furthermore, the model parameter fits obtained
using synthetic textures also predict the segmentation thresholds presented in Arsenault, Yoonessi, and
Baker (2011) for natural and phase-scrambled natural texture carriers.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The segmentation of boundaries is an important problem that
the visual system must solve before any more complex object pro-
cessing can occur. Boundaries between objects result in disconti-
nuities in a variety of image properties, among which changes in
texture are a particularly interesting example because the means
by which they are segmented is not yet well understood. Texture
can be represented in terms of spatial statistics, but it is unclear
what subset of these statistics is actually employed by segmenta-
tion mechanisms. Much previous research has aimed to determine
the precise statistical differences that enable segmentation when
they differ on either side of a boundary (Julesz, 1962; Julesz, Gil-
bert, & Victor, 1978; Beck, 1983), such as contrast or orientation.
Although textures contain, and their neuronal representation
may encode, many other statistics that are constant on either side
of a boundary, the potential influence of these statistics has been
largely unexamined. For example in Fig. 1 the texture statistics of
the bark (A) and leaves (B) do not vary across the boundary, so they
cannot enable segmentation, but the modulation defined over the
leaves is easier to segment – thus the nature of the texture influ-
ences segmentation. Although this demonstration makes the influ-
ence of the texture structure apparent, it is unclear which specific
aspects of the structure exert this influence.

An early study demonstrating the influence of texture proper-
ties was that of Caelli (1980) who examined the influence of a
box-shaped feature common throughout the stimulus on segmen-
tation of a boundary defined by a difference in the orientation of
line segments within the boxes. He found that segmentation was
more difficult when the boxes were present than when the line
segments were presented alone. Arsenault, Yoonessi, and Baker
(2011) used contrast modulations applied to natural textures to
show that higher-order texture statistics can impair contrast
boundary segmentation, even though those statistics are not rele-
vant to the segmentation task. We noticed that textures with a
greater difference in threshold between the intact and phase-
scrambled conditions appeared to be more sparse. We applied a
number of image statistical measures that have been used in the
literature to quantify the density of textures or natural scenes,
and found that edge density (Bex, 2010) correlated strongly with
the difference between thresholds. From this, we suggested local
edge structure and sparseness as two candidates for texture
properties that might influence segmentation, resulting in such a
performance difference.
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Fig. 1. In both of these textures, a contrast difference enables the percept of a right oblique boundary. The properties of the materials (leaves and bark) forming the carrier
textures are different in structure, which results in a difference in the strength of the boundary percept (the modulation of the leaves (A) is easier to see than the modulation
of the bark (B)), even though the difference in contrast across the boundary is identical in both stimuli. In this example, the characteristics of the textures can be said to
influence segmentation.
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It is difficult to assess the roles of specific statistics using natural
textures because most individual properties cannot be varied inde-
pendently or manipulated parametrically. While we have reason to
suspect that sparseness or local edge structure might be important
influencing statistics, our previous results are only correlational. In
the following experiments, we address these challenges by creating
synthetic textures consistent with observations of the statistical
properties of natural textures using broadband ‘‘edgelet’’ micropat-
terns. These textures allow us to not only manipulate global struc-
ture through phase scrambling as in our previous study (Arsenault,
Yoonessi, & Baker, 2011), but also to control the presence of local
structure (by phase-scrambling individual micropatterns) and
sparseness (by changing the number of micropatterns).

In this paper, we explore not only which higher-order texture
properties may be at the root of the observed threshold reduction
following phase scrambling, but also why these properties might
have the impact they do on segmentation. It could be the case that
the overall contrast-defined boundary was masked by local con-
trast modulations caused by variegated regions of high-contrast
features that form the structure of sparse textures (Allard &
Faubert, 2007). Alternatively, it could be that the presence of
broadband contours in the texture distracts observers from the
less-salient contrast boundary, or some combination of these two
effects.

A widely accepted model for contrast boundary segmentation,
the filter–rectify–filter (FRF) model, is a helpful starting point when
thinking about how texture properties can affect segmentation. The
most general form of the model consists of a stage of relatively high
spatial frequency linear filtering, followed by a pointwise rectifica-
tion (typically implemented with a square law), and a second stage
of linear filtering, on the scale of the boundary to be segmented.
Depending on the shape of the rectification (expansive, compres-
sive), images with the same global contrast but different local struc-
ture could produce different responses. For example, a texture with
its contrast energy concentrated in locally high-contrast regions
will produce a greater response for expansive nonlinearities than
a texture with an even distribution of contrast energy over space.
Given this possibility, sparseness and local broadband edges are
particularly logical statistical properties of interest, because both
result in localized concentrations of image energy.

Here we first aim to verify that these synthetic textures contain
the relevant properties of natural textures by demonstrating again
the effect of phase-scrambling on contrast boundary segmentation
thresholds as in Arsenault, Yoonessi, and Baker (2011). By varying
texture density and phase structure, we are also able to differenti-
ate the influence of local phase alignments, global phase relation-
ships, and sparseness in segmentation of both contrast and
orientation boundaries. We chose to study contrast boundaries
because they are the simplest kind of texture boundary, and orien-
tation boundaries because we have observed that natural textures
are frequently narrowband for orientation and this type of bound-
ary has been widely studied (e.g. Landy & Oruç, 2002; Meso & Hess,
2011). We implement a filter–rectify–filter model and fit the shape
of the rectification to account for the pattern of both our contrast
and orientation boundary segmentation results. Having fit the re-
sults using synthetic textures, we assess how well this model can
also predict the thresholds obtained using contrast modulations
of natural textures in Arsenault, Yoonessi, and Baker (2011).

2. General methods

2.1. Stimuli

Each stimulus consisted of a single texture pattern that was
contrast-modulated with a half-disc envelope, or two texture pat-
terns ‘quilted’ together to form a disc with distinct halves (a proce-
dure illustrated in Fig. 2A). The textures we used were designed to
mimic the image statistics of natural textures, while allowing for
control of specific texture properties, by randomly scattering a
large number of edgelet micropatterns.

2.1.1. Micropatterns
To emulate the local edge structure of natural textures, we used

edgelet micropatterns each of which contained a spatially localized
edge composed of phase-aligned Fourier components. The edge of
a micropattern of size s was created by adding together the Fourier
components of a half-cycle of a square wave (f,3f,5f, . . . ,nf where
n = s/4), with decreasing amplitudes (scaled by 1/f), of a given orien-
tation (h) and aligned in sine-phase (/ = 0). One cycle of the lowest
spatial frequency pattern was combined with like-oriented
in-phase harmonics of gratings (G) to form a square wave ‘‘edge’’
(D):

Dx;yðh; sÞ ¼
Xs

4
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1
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These edges were tapered by a Gaussian window, whose sigma
was 1/8 of the size of the micropattern (r = s/8), for the final edg-
elet (D0) (Fig. 2B – top):

D0 ¼ Dx;ye
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To generate novel textures rapidly, we created a library of 48
such ‘intact’ micropatterns at four sizes (16, 32, 64, 128 pixels, or
0.22, 0.44, 0.87, and 1.74 degrees of visual angle), each at twelve
orientations evenly spaced in 30� increments.



Fig. 2. Procedure for constructing naturalistic textures and orientation-modulated boundaries. (A) Examples of micropattern types used to create synthetic textures. Top:
intact Gaussian-enveloped half cycle of a square wave (‘‘edgelet’’); bottom: phase-scrambled square wave within the same Gaussian envelope. (B) Top: variations of phase
scrambled micropatterns, Bottom: same instances, polarity-reversed. (C) Procedure for quilting stimuli. Windowed half-disc envelopes (product of Wxy and Exy, see text) are
multiplied with their corresponding carrier textures (Cxy), yielding contrast-modulated boundaries. These modulated halves are then combined, in this case to produce an
orientation-modulated boundary. The modulation depth of the stimulus shown is 100%.
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In addition to square-wave edgelets, we created locally phase-
scrambled edgelets in a similar manner but with the components’
phases (/) randomized rather than aligned (Fig. 2B – bottom). A li-
brary of ‘locally scrambled’ micropatterns was created with 50 ver-
sions of the phase-scrambling (e.g., Fig. 2C) at each micropattern
size and orientation.

2.1.2. Textures
Edgelets drawn from the library were randomly positioned on a

544 � 544 pixel canvas and summed where they overlapped. While
the square-wave edgelets were luminance-balanced with equally
sized light and dark regions, the random phases of the scrambled
edgelets could result in net mean luminance differences from the
grey background. To ensure that the texture stimuli were approxi-
mately luminance-balanced, each phase-scrambled edgelet was
polarity-reversed (or not) with a 50% probability before being
added to the canvas (Fig. 2C). To obtain an approximately 1/f ampli-
tude spectrum, four sizes of micropatterns (16, 32, 64, and 128 pix-
els) were added in proportions necessary to achieve equal coverage
for each spatial frequency (Kingdom, Hayes, & Field, 2001). Thus for
each 128-pixel micropattern, 4, 16, and 64 of the progressively
smaller micropatterns were added – so each texture contained an
integer multiple of 85 micropatterns. The possible positions of the
micropatterns were constrained to lie entirely within a 544 � 544
canvas, which was subsequently cropped to the central 480 � 480
region after all the micropatterns had been drawn.

Three density conditions were created by varying the number of
micropatterns within each texture stimulus: the low density condi-
tion had 595 micropatterns, medium density 1530, and high density
2975. These conditions were chosen to result in textures that were
qualitatively different in appearance, while satisfying the above
constraints to produce an approximately 1/f amplitude spectrum.

For each density, three structure conditions were created: intact,
locally scrambled, and globally scrambled. Intact (INT) textures
were composed from square-wave edgelets as described above –
these textures were rich in both global structure (arrangement of
micropatterns) and local structure (broadband edges). By one-
dimensionally phase-scrambling the individual edgelets we pro-
duced a locally scrambled (LS) texture that had an equivalent
amount of global structure but lacked local phase alignments.
We created globally scrambled (GS) textures by applying a Fourier
transform to both the intact texture and a white-noise image of
the same size. The phase values in the original texture were re-
placed with those of the white noise and then inverse-transformed,
thus leaving the power spectrum unchanged while completely ran-
domizing the phases (Dakin et al., 2002).

Due to the random arrangement of micropatterns, some of the
INT and LS textures exhibited substantial inhomogeneity, and thus
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were unsuitable to use as carrier patterns. To circumvent this prob-
lem we rejected textures having differences in luminance or RMS
contrast greater than 3 dB between quadrants of the texture
(Arsenault, Yoonessi, & Baker, 2011). In the low density condition,
only about 12% of the generated textures passed this test; in the
medium density condition, about 47% of textures passed; and in
the high density condition, about 76% passed. Each texture was
scaled to have a mean value of 0, and its extreme luminance values
were clipped at ±3 standard deviations and scaled to fit in the
range of intensities between ±1.0.
2.1.3. Boundary creation
2.1.3.1. Contrast boundaries. To create contrast-defined boundaries,
textures were contrast-modulated by an envelope pattern, consist-
ing of an obliquely oriented half-disc, graduated with a cosine ta-
per. The final stimulus, Sx,y, is the product of the texture carrier,
Cx,y, the tapered window Wx,y, and the envelope, Ex,y, scaled by
the modulation depth, m:

Sx;y ¼ Lo 1þ cCx;yWx;yð1þmEx;y=2Þ
� �

ð3Þ

where |Cx,y| 6 1.0, |Ex,y| 6 1.0, Lo is the mean luminance, and c is
a contrast scaling factor which is adjusted to produce the desired
RMS contrast.
2.1.3.2. Orientation boundaries. Orientation-defined boundaries
were created between different textures using a method of ‘quilt-
ing’ described by Watson and Eckert (1994) and Landy and Oruç
(2002), and illustrated in Fig. 2C. To modulate two texture carriers
(CA and CB) with respect to one another we used a half-disc enve-
lope function (Ex,y), scaled to create the carrier-specific modulators
(EA and EB):

EA ¼Wx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmEx;yÞ=2

q
ð4Þ
EB ¼Wx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�mEx;yÞ=2

q
ð5Þ

The modulation depth (m) parameter specifies the difference in
contrast between the envelope halves. The luminance-balanced
carrier textures (CA and CB) are scaled to yield the desired contrast
with scaling factor c, and their means are adjusted so that the final
stimulus will be luminance balanced after the envelope has been
applied:

C 0A ¼ cCA �
R R

cCAEA � 0:5R R
EA

ð6Þ
C 0B ¼ cCB �
R R

cCBEB � 0:5R R
EB

ð7Þ

The latter adjustment is necessary because of the stochastic
nature of the textures. Even though each original (entire) texture
is zero-balanced, the portion of it enclosed by the envelope might
have a slight non-zero mean, which could result in an artifactual
luminance boundary. The adjustment in Eqs. (6) and (7) is de-
signed to prevent such luminance artifacts.

The final stimulus, Sx,y, is the sum of the two carriers, each spa-
tially weighted by their respective envelopes:

Sx;y ¼ Lof1þ C 0AEA þ C 0BEBg ð8Þ

The weighting is specified by the modulation depth, m in Eqs.
(3)–(5). At a modulation depth of zero, the resulting stimulus is a
homogeneous blend of the two textures. At a modulation depth
of 100%, one half of the disc is entirely CA, and the other half en-
tirely CB, with a smooth taper between them at the boundary.
2.2. Apparatus

The stimuli were presented on a CRT monitor (Sony Trinitron
Multiscan G400, 81 cd/m2, 75 Hz, 1024 � 768 pixels), gamma-line-
arized with a digital video processor (Bits++, Cambridge Research
Systems) for greater bit-depth at low contrasts. Stimulus patterns
appeared in a central 480 � 480 pixel patch on a mean grey back-
ground. Observers viewed the stimuli from a distance of 114 cm,
resulting in a stimulus visual angle of approximately 6.5�. The
experiment was run on a Macintosh (Desktop Pro, MacOSX) using
Matlab and PsychToolbox (Brainard, 1997; Kleiner, Brainard, &
Pelli, 2007; Pelli, 1997).
2.3. Task

Observers were presented with a central fixation point and ini-
tiated each 100-ms stimulus presentation with a button press. The
stimulus contained a boundary that was oriented 45�, either left or
right oblique, and observers indicated the perceived orientation
with a button press. Feedback was not provided. The screen was
maintained at the mean grey background between stimulus
presentations.

We determined an appropriate range of testing values from pi-
lot experiments for each observer, and used a method of constant
stimuli over five logarithmically spaced level values of modulation
depth to measure each threshold. All stimuli were presented at a
suprathreshold carrier RMS contrast of 14.5%. A minimum of three
blocks of 100 trials, with 20 trials per level, were run for each con-
dition to yield a total of at least 60 trials per level.

These experiments conformed to McGill University’s ethical
guidelines for human experimentation, and all subjects provided
informed consent.
2.4. Data analysis

Percent-correct data from a total of 600 trials were fit with a lo-
gistic function, and a threshold was interpolated at the 75% correct
point. Curve-fitting was performed using the statistics package
Prism (GraphPad Software, Inc.), and standard errors were esti-
mated with its bootstrapping algorithm.

We measured the effect size (Klein, 2005) using Cohen’s d with
the standardizer s computed as:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

q
2

ð9Þ

where r1 and r2 are the sample standard deviations of the com-
pared conditions.
3. Experiment 1: Contrast boundary segmentation

In this experiment we set out to (1) test whether our finding
that higher-order statistics impair contrast boundary segmenta-
tion in natural textures (Arsenault, Yoonessi, & Baker, 2011) could
be replicated using synthetic edgelet textures and, if so, (2) inves-
tigate the influence of sparseness and local edge structure on seg-
mentation thresholds. Given our previous findings, we expect
better performance in the globally scrambled (GS) condition than
in the intact (INT) condition, at least for some values of density.
If local edge structure influences segmentation, we expect a differ-
ence between the LS and INT conditions; if sparseness influences
segmentation, we expect a decrease in threshold as density is in-
creased in the INT and LS conditions.
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3.1. Methods

Modulation depth thresholds for segmentation of contrast-de-
fined boundaries were measured over a number of synthetic tex-
tures, created as described in the general methods. We tested
intact, locally scrambled, and globally scrambled textures at each
of three density levels. These are depicted in Fig. 3 with the struc-
ture changes (INT, LS, GS) varying across columns and the density
increasing down each column. Thresholds were measured for four
experienced psychophysical observers with normal or corrected-
to-normal vision, three of whom (JH, AR, YJK) were naive to our
hypotheses.
3.2. Results

Contrast boundary segmentation results are shown in Fig. 4, for
individual observers in the upper four graphs, and as a group aver-
age in the lower graph.

Effect of structure: The globally scrambled condition (GS, white
triangles) appears easier than the other conditions, with lower
thresholds independent of density. Thresholds in the intact (INT,
dark circles) and locally scrambled (LS, grey diamonds) conditions
Fig. 3. Examples of contrast modulated stimuli used for Experiment 1, shown at a mod
density increases from top to bottom. The three structure conditions are intact (INT), loc
condition does not appear different at varying densities, because density information is
appear both higher overall, and dependent upon density, with low-
er thresholds at higher densities.

A two-way ANOVA was run to test for significant differences
between the structure conditions (INT, LS and GS) at the three
values of density. This confirmed a significant main effect of
structure F(2,18) = 49.4, p < .05. Post-hoc Bonferroni tests (Sup-
plementary material – Table 1) indicated no evidence of a differ-
ence between the INT and LS results at any density, but that both
are significantly different from the GS condition at all but the
highest density. That the effect of density depends on the struc-
ture condition was confirmed by a significant interaction
(F(4,18) = 7.69, p < .05). Analysis of the effect-size, measured
using Cohen’s d, shows that the difference between the intact
and globally scrambled conditions (the effect of phase scram-
bling) decreases as density is increased (Supplementary material
– Table 1). The same trend is observed between the locally (LS)
and globally (GS) scrambled conditions.

Effect of density: It appears as though density affects psycho-
physical performance in the intact (INT) and locally scrambled
(LS) conditions only, with thresholds decreasing as density in-
creases. Thresholds in the globally scrambled condition (GS) do
not appear to change as a function of density, which should be
the case, because density is a higher-order statistic that should
ulation depth of 50%. The structure conditions are arranged horizontally, while the
ally scrambled (LS), and globally scrambled (GS). Notice that the globally scrambled
destroyed by phase scrambling.
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Fig. 4. Experiment 1 (contrast boundary segmentation) results for four observers
(small graphs), and the average of these observers (large graph). The structure
conditions are: intact (INT), filled circles; locally scrambled (LS), grey diamonds;
and globally scrambled (GS), open triangles. Density increases along the horizontal
axis. Note improved performance for phase scrambled carrier textures (GS), and
lack of effect of density in this condition. In contrast, intact and locally scrambled
conditions both result in higher thresholds at low densities than at high. Error bars
indicate standard errors.

50 E. Zavitz, C.L. Baker / Vision Research 91 (2013) 45–55
be largely nullified following phase scrambling in broadband
images such as these.

The two-way ANOVA showed a significant main effect of den-
sity F(2,9) = 12.25, p < .05, and a significant interaction between
density and structure F(4,9) = 7.69, p < .05. A nonlinear regression
(linear in log–log space) was performed on the each of the struc-
ture conditions as a function of density (INT, LS, and GS). F-tests
confirmed that the slope of the globally scrambled condition (GS)
with respect to density is not significantly different from a slope
of zero (F(1,10) = 0.37, p > .05), while the slopes of the intact
(F(1,10) = 51.52, p < .05) and locally scrambled (F(1,10) = 12.99,
p < .05) conditions are significantly different from zero.

These results suggest that our synthetic textures capture at
least some of the image statistics that cause the phase scrambling
effect that we observed earlier in natural textures (Arsenault,
Yoonessi, & Baker, 2011). Because performance in the intact and lo-
cally scrambled conditions is about the same, it appears that local
phase structure may not substantially affect contrast boundary
segmentation. Furthermore, because segmentation thresholds de-
crease as density is increased, it appears that sparseness is a key
aspect of global structure that impairs contrast boundary
segmentation.

4. Experiment 2: Orientation boundary segmentation

In the previous experiment we found that global phase
structure, specifically sparseness, influenced contrast boundary
segmentation. This experiment aimed to extend those findings to
texture boundaries defined by orientation. The structure of the
models used to segment orientation-defined boundaries is very
similar or the same as those used to segment contrast boundaries
(Landy & Oruç, 2002) – two stages of linear filtering separated by a
pointwise nonlinearity – so it is a reasonable possibility that the
two conditions might produce a similar pattern of results.

4.1. Methods

In this experiment, we measured modulation depth thresholds
for observers segmenting boundaries defined by differences in tex-
ture orientation. To maximize orientation contrast we used pairs of
textures, each texture narrowband for orientation with micropat-
terns oriented at 0� and 90� to form a ‘‘herringbone’’ along the
±45� boundary in the quilted stimulus. As in the contrast boundary
segmentation task, thresholds were measured for intact and locally
scrambled textures at each of three density levels (Fig. 5). The glob-
ally scrambled stimulus was only depicted once because density
information is destroyed following phase scrambling. In this
experiment, modulation depth thresholds were measured for four
experienced psychophysical observers with normal or corrected-
to-normal vision, three of whom (JB, JH, AR) were naive to our
hypotheses.

4.2. Results

Orientation boundary segmentation results are plotted in Fig. 6,
with individual thresholds in the four top graphs, and group-aver-
age results at bottom. The global scramble (GS) condition was
tested only once, because it does not vary with density (as ob-
served in Experiment 1).

Effect of local structure and density: The data suggest that remov-
ing only local phase alignments (LS, grey diamonds) has no system-
atic effect on segmentation, as evidenced by the similarity between
the intact (INT, dark circles) and LS conditions. Thresholds in both
the intact (INT) and LS conditions appear to decrease as density in-
creases. A two-way 2 � 3 ANOVA confirmed a main effect of den-
sity (F(2,9) = 51.78, p < .05), found no effect of structure
(F(1,9) = 0.03, p > .05), and no evidence of an interaction
(F(2,9) = 0.01, p > .05).

Effect of global structure: As in the contrast boundary segmenta-
tion experiment, the data indicate that removing global phase
structure (GS, white triangles) decreased thresholds substantially
relative to the intact and locally scrambled texture thresholds at
low densities, and progressively less at higher densities. To confirm
these effects, we compared the INT and LS conditions to the GS
condition at each density using three t-tests with Sidak–Bonferroni
corrections for multiple comparisons. The GS condition was signif-
icantly different from the INT and LS conditions at each density:
595 (t(10) = 14.56, p < .05, d = 8.41), 1530 (t(10) = 5.74, p < .05,
d = 3.54), and 2975 (t(10) = 2.92, p < .05, d = 1.81). The size of the
effect (d) decreases as density increases.

Comparison of orientation and contrast boundary segmentation:
Orientation and contrast boundary segmentation can be compared
in three ways: the overall difficulty of the boundary type, the effect
of density, and the effect of phase scrambling. (1) Thresholds are
much higher in every condition for orientation modulations than
for contrast modulations, indicating that orientation boundary seg-
mentation is overall more difficult than contrast boundary seg-
mentation. A one-tailed, paired samples, t-test confirmed that
this difference is statistically significant t(6) = 5.13, p < .05. This
finding is consistent with Motoyoshi and Nishida (2004), who also
found a similar quantitative difference when comparing orienta-
tion- and contrast-defined boundary segmentation directly. (2)
The threshold decline with density for the intact and locally
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scrambled conditions appears slightly steeper in the case of orien-
tation than contrast boundary segmentation. A nonlinear regres-
sion (linear in log–log space), revealed that although the slopes
were steeper for orientation (�0.49 for both INT and LS) than for
contrast (�0.26 for both INT and LS), these individual measures
of slope did not fit the data significantly better using the same
slope for all four functions (F(3,40) = 1.341, p > .05). (3) The influ-
ence of phase scrambling can be examined by looking at the
change in log threshold between the intact (INT) and globally
scrambled conditions (GS) at each density. A comparison of this
difference at each density between orientation and contrast
boundary segmentation using a paired, two-tailed t-test shows
that the influence of phase scrambling was significantly greater
for orientation modulated stimuli than for contrast modulated
stimuli t(2) = 4.45, p < .05.

In sum, orientation boundary segmentation, like contrast
boundary segmentation, is affected by global phase structure, but
not local phase structure, and thresholds decline with density at
a similar rate. However, it is more difficult than contrast boundary
segmentation, and exhibits a greater difference in performance be-
tween intact and global phase scrambling.
Fig. 5. Examples of orientation modulated stimuli used for Experiment 2, shown at a mod
density is varied vertically. The globally scrambled condition (GS) was only tested once,
systematic effect of density was observed in the previous experiment.
5. Model

Second-order boundary segmentation has often been under-
stood in terms of a ‘‘filter–rectify–filter’’ model using early high
spatial-frequency filters to capture the texture, followed by a
nonlinearity and a late, low spatial-frequency filter that recovers
the boundary (e.g. Chubb & Sperling, 1988; Landy & Graham,
2004; Malik & Perona, 1990). Here we implement a model with
a filter–rectify–filter architecture in order to see whether the ob-
served effects of structure and density can be accounted for using
such a model, and if so, for what configuration and parameter
values.

5.1. Filter–rectify–filter model

We implemented a basic filter–rectify–filter model (Fig. 7A), as
described below. First the stimulus (Sx,y) was convolved (*) with a
bank of linear filters (G1) that varied in orientation (h), spatial fre-
quency (x), and phase (/):

F1ðh;x;/; x; yÞ ¼ G1ðh;x;/Þ � Sðx; yÞ ð10Þ
ulation depth of 100%. The structure conditions are arranged horizontally, while the
because density information is destroyed by phase scrambling and (as expected) no
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The filters were log-gabors (Kovesi, 2000), at two phases (even
and odd), six orientations (evenly spaced with their bandwidths
chosen for approximately uniform coverage), and four spatial fre-
quencies (160, 80, 40, and 20 cpi, each with a bandwidth of
approximately 1.5 octaves). The output of each of these filters
(F1) was weighted (wf), full-wave rectified and raised (pointwise)
according to a power-law of order k, then pooled over phase:

Rðh;x; x; yÞ ¼
X

/

jF1ðh;x;/; x; yÞ �wf jk ð11Þ

The values of wf were chosen to equalize responses across spa-
tial scales for a stimulus with a 1/f spectral falloff (Field, 1987). To
this end, the responses to the higher spatial frequency channels
were increased relative to the responses to lower spatial frequen-
cies, using a weighting function w(f) = 2f, where f is an index of spa-
tial frequency with f = 1 designating the lowest frequency. Note
that this is functionally equivalent to multiplying by the frequency
(f). Dot products were computed between these responses (Rx,y)
and two second-stage filters (G2) in the form of low spatial fre-
quency sine-phase gabor functions that match the two possible
orientations of the boundary in the stimulus (+45� and �45�), as
well as its central position:

F2ðþ45; h;xÞ ¼ G2ðþ45Þ � Rðh;x; x; yÞ ð12Þ

F2ð�45; h;xÞ ¼ G2ð�45Þ � Rðh;x; x; yÞ ð13Þ
The outputs (o) were computed by pooling the magnitudes of
the late-stage filter responses across the orientations and spatial
frequencies of the early-stage filters. The pooled response magni-
tudes were raised to a power (the reciprocal of k), and then com-
bined with additive decision noise (n) for the final output value.
(Eqs. (14) and (15)). The noise values n1 and n2 were drawn from
a normal distribution with a mean of 0 and whose standard devi-
ation, or amplitude, a is a free parameter of the model.

oþ45 ¼ ðRh;xjF2þ45 ðh;xÞjÞ
1=k þ n1 ð14Þ

o�45 ¼ ðRh;xjF2�45 ðh;xÞjÞ
1=k þ n2 ð15Þ

These outputs were compared, and the late-stage filter (left- or
right-oblique) with the strongest response determined the deci-
sion (d) of the model:

dðoÞ ¼
þ45 if oþ45 P o�45

�45 if o�45 > o45

�
ð16Þ
5.2. Simulation

We tested the model to determine its segmentation thresholds
in much the same manner as we tested our human participants.
The model made left- or right-oblique decisions in 60 trials for
each of the stimulus conditions illustrated in Figs. 3 and 5 on 12
logarimithically spaced modulation depth levels that spanned
chance to perfect performance. We measured the percent-correct
for each level and stimulus condition, and then fit a logistic func-
tion using Matlab to determine the model’s threshold. Because
the stimuli are randomly generated on each trial, model results
varied from one simulation to another. For this reason, we simu-
lated the experiment four times and averaged the thresholds. Stan-
dard errors were determined based on variability between the four
runs.

5.3. Optimization

The model has two free parameters: k, the order of the power-
law nonlinearity, and a, the amplitude of the decision noise distri-
bution from which n1 and n2 are sampled. We optimized the model
to best estimate the thresholds in both the contrast and orientation
tasks by performing an exhaustive search of the parameter space.
We simulated the experiment as described above for five power-
law exponents, each at 400 noise levels. For each pair of noise
amplitude and power-law exponent values, we computed a sum
of squares error from the difference between the log human
threshold (h), and log model performance (m) (Fig. 7B).

SSE ¼
X

i

ðlog hi � log miÞ2 ð17Þ
5.4. Results

The minimum SSE was obtained with k = 0.5, and a = 107.25. The
variance accounted for (VAF), computed using Pearson’s r, with
these parameters was 96.3% (Fig. 8A). The threshold estimates,
using the optimized values of the two free parameters, were aver-
aged over four runs of the model and plotted in Figs. 4 (contrast)
and 6 (orientation). Fig. 4 shows the contrast boundary segmenta-
tion results for the model (dashed lines) and humans (solid lines).
The model, like human observers, shows a decrease in segmenta-
tion thresholds for globally scrambled textures relative to the sim-
ilar intact and locally scrambled texture conditions, and matches
the human thresholds well for most conditions. Thresholds for in-
tact and locally scrambled textures are again very similar and the
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model consistently predicts declining threshold with density, but
the model considerably overestimates the thresholds in the lowest
density condition, and thus the rate at which thresholds decrease
with density in the INT and LS conditions. The orientation bound-
ary segmentation results are shown in Fig. 6. The model matches
the quantitative human data in the GS condition perfectly. As in
the human data, the model shows little difference between the
INT and LS conditions at any density, and the rate at which thresh-
olds in these conditions decrease with density is very similar to the
human results. The model appears to slightly underestimate
thresholds for the INT and LS conditions at all densities. A detailed
examination of the character and robustness of the model fit is
provided in the Supplementary material (Figs. S1 and S2).

Both the model and human observers had higher thresholds for
orientation than for contrast boundary segmentation, which is
readily explainable in terms of the model. The information for ori-
entation segmentation is only in two orientation channels of the
early filters (vertical and horizontal), while contrast information
is available in all of the first-stage spatial frequency and orienta-
tion channels. Overall, the model performs very well given that
only two free parameters were optimized. With a compressive
nonlinearity and an appropriate amount of decision noise, the
model performance depends upon global higher order statistics
in the same way that human performance does, yet also (like hu-
mans) is insensitive to local phase structure.

After fitting the model to thresholds obtained using synthetic
textures, we used it to predict the average thresholds for each
texture published for contrast boundary segmentation in natural
textures (Arsenault, Yoonessi, & Baker, 2011) (Fig. 8B). These
40 thresholds (20 intact, 20 scrambled) were reasonably well-
predicted by the model, with VAF = 0.86%.
6. Discussion

Our previous work (Arsenault, Yoonessi, & Baker, 2011) indi-
cated that higher-order image statistics impair segmentation, and
suggested that sparseness and/or local edge structure might be
important texture statistics for this task. Here we have identified
sparseness as a critical texture property, ruled out a role for local
phase alignments, and extended our findings on contrast boundary
segmentation to orientation boundaries. In both cases the presence
of higher-order structure was found to impair segmentation;
among textures with structure (i.e., excluding globally scrambled
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textures), segmentation was progressively impaired by increasing
sparseness. For both orientation- and contrast-defined boundaries,
the presence of local phase alignments did not affect segmentation.
These results were accounted for using an FRF-style model with a
compressive intermediate nonlinearity, an expansive output non-
linearity, and decision noise.

It can be instructive to examine why the model behaves as it
does for sparse textures. When sparseness is increased, with over-
all RMS contrast held constant, energy is clumped into local, higher
contrast regions separated by lower contrast regions. These
changes in local contrast are themselves contrast modulations that
could act as masking noise for the mechanism segmenting the
main boundary (Allard & Faubert, 2007). We examined the poten-
tial impact of these local contrast modulations on the model’s
behaviour by measuring the average second-stage filter response
to ten randomly generated, unmodulated textures in each condi-
tion (Fig. S3 – see Supplementary material). Even though the sec-
ond-stage filter was narrow-band and the local contrast
modulations relatively high spatial frequency (Hutchinson &
Ledgeway, 2004), its response was affected by the texture’s sparse-
ness. Second-stage filter responses were lowest (less second-order
interference) in the GS condition, and highest (more second-order
interference) in the INT & LS conditions at the lowest density (595).
The average response also progressively declined with increasing
density. Because the model processes orientation and contrast
boundaries in the same pathway, local contrast modulations are
detectable by the second-stage filter in the same way, and thus
could similarly interfere with orientation boundary segmentation.
Thus it appears as though the effect of sparseness in the model is
due to the second-order noise inherent in sparse textures. This re-
sult suggests that a similar masking might be happening in human
observers.

A compressive intermediate nonlinearity provided the best fit
for our results. In most earlier texture segmentation models, a
square law has been the conventional intermediate nonlinearity,
probably because it conceptually corresponds to the Fourier energy
(Malik & Perona, 1990). Graham and Sutter (1998) used a local con-
trast summation paradigm to estimate this nonlinearity, finding
that it was expansive with k between 2 and 4. The role of the
compressive nonlinearity in fitting our results was mainly to min-
imize the effect of local structure, and to a lesser extent, to deter-
mine the magnitude of the effect of sparseness. Such a compressive
nonlinearity is consistent with some recent analyses of visual cor-
tex neurons. Mineault et al. (2012) estimated the nonlinearity
transforming MT outputs before they are combined by MST
neurons is usually compressive, with values of k approximately
0.2–0.4. Nishimoto and Gallant’s (2011) model that best predicted
responses of MT neurons used a compressive nonlinearity (k = 0.5)
between V1 outputs and MT. This compressive summation could
be the result of normalization mechanisms, for example contrast
gain control or surround suppression (Carandini & Heeger, 2011).

Recent work by Westrick, Henry, and Landy (2013) demon-
strated that a noise masking method of estimating second-stage
filter bandwidth produces qualitatively different results from a dis-
crimination at threshold task. They showed that both kinds of re-
sult could be explained by a model with an intermediate-stage
normalizing nonlinearity, using a ‘‘winner-take-all’’ operation be-
tween early-stage filter responses. Due to the early noise in their
model, this nonlinearity behaves on average like a sigmoid-shaped
function with a steep slope, which is like a thresholding function.
Such a function would have a similar effect as our simple compres-
sive nonlinearity, by producing an approximate binarization of
early filter responses.

A notable discrepancy of our model is its prediction that sparse-
ness impairs performance on contrast boundaries more than is
seen for human observers (Fig. 4). This difference between ob-
served and simulated results could occur if human observers em-
ploy a second-stage filter with a narrower bandwidth than
implemented in our model – such a filter would pass less of the
‘‘contrast noise’’ generated by texture sparseness. However in that
case it is unclear why a similar discrepancy is not seen for orienta-
tion boundaries (Fig. 6).

The best model for our results employed an (expansive) output
nonlinearity following the second stage of filtering and pooling, as
well as an intermediate (compressive) nonlinearity between the
first- and second-stage filters. The sigmoidal function that is com-
monly used to represent the contrast response function of a neuron
is expansive at low contrasts and compressive at high contrasts. It
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is possible that the first-stage responses are strong enough to be af-
fected by gain control mechanisms, and thus fall on the compres-
sive part of such an S-shaped contrast response function, while
the second-stage responses fall within the lower, expansive, por-
tion of such a function.

An important kind of sensitivity to higher-order image statistics
might be some sort of ‘conjunction-detection’, i.e. an enhanced
(supralinear) response to combinations of signals from earlier
stages. Methods of conjunction detection have been proposed on
the feature level, using products of early filter responses and clus-
tering methods (Freeman & Simoncelli, 2011; Martin, Fowlkes, &
Malik, 2004). Peirce (2007) suggests that an intermediate compres-
sive nonlinearity can serve to create conjunction selectivity – how-
ever, see also May and Zhaoping (2011), Peirce (2011).

The model fits our data reasonably well with two free parame-
ters, but there are a number of biologically relevant changes that
might improve the model further if a more complex data set were
available for fitting additional model parameters. Interactions
across space in the form of surround suppression (Tanaka & Ohza-
wa, 2009), or between channels in the form of cross-orientation
inhibition (Motoyoshi & Nishida, 2004) are suggested by the com-
pressive nonlinearity, but their nature is not revealed in detail.
Spatial interactions are critical to incorporate, because spatial
arrangement of information inherently reflects higher-order image
statistics. Likewise, cross-channel interactions might be expected
to play an important role for responses to broadband stimuli
(Bex, Mareschal, & Dakin, 2007; David, Vinje, & Gallant, 2004).

There are some image properties known to be relevant to tex-
ture perception that our edgelet-based textures did not allow us
to manipulate. For instance, we did not consider local contrast
polarity, though it can enable segmentation (Malik & Perona,
1990; Motoyoshi & Kingdom, 2007), or the higher-order spatial
properties that are known to be relevant to texture appearance
(Portilla & Simoncelli, 2000). However, edgelet micropattern tex-
tures provided a useful tool for studying the impact of specific tex-
ture properties on segmentation in a parametric way. They allowed
us to produce textures with a naturalistic shape of the amplitude
spectrum (1/f rolloff) and to vary sparseness while separating out
the effects of global from local phase alignments. This enabled us
to characterize the distinct effects (or lack thereof) of local phase
alignments, global phase relationships, and density on second-or-
der segmentation mechanisms.

From this work, we can conclude that higher-order statistical
information is important to texture segmentation mechanisms,
and that texture sparseness in particular plays a large role our abil-
ity to see boundaries defined by that texture.
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