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Spatiochromatic statistics of natural scenes:
first- and second-order information

and their correlational structure
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Spatial filters that mimic receptive fields of visual cortex neurons provide an efficient representation of ach-
romatic image structure, but the extension of this idea to chromatic information is at an early stage. Relatively
few studies have looked at the statistical relationships between the modeled responses to natural scenes of the
luminance (LUM), red–green (RG), and blue–yellow (BY) postreceptoral channels of the primate visual system.
Here we consider the correlations among these channel responses in terms of pixel, first-order, and second-
order information. First-order linear filtering was implemented by convolving the cosine-windowed images
with oriented Gabor functions, whose gains were scaled to give equal amplitude response across spatial fre-
quency to random fractal images. Second-order filtering was implemented via a filter–rectify–filter cascade,
with Gabor functions for both first- and second-stage filters. Both signed and unsigned filter responses were
obtained across a range of filter parameters (spatial frequency, 2–64 cycles/ image; orientation, 0–135°). The
filter responses to the LUM channel images were larger than those for either RG or BY channel images. Cross
correlations between the first-order channel responses and between the first- and second-order channel re-
sponses were measured. Results showed that the unsigned correlations between first-order channel responses
were higher than expected on the basis of previous studies and that first-order channel responses were highly
correlated with LUM, but not with RG or BY, second-order responses. These findings imply that course-scale
color information correlates well with course-scale changes of fine-scale texture. © 2005 Optical Society of
America

OCIS codes: 100.2960, 330.1720, 330.4060, 330.4270, 330.6110.
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. INTRODUCTION
he role of color vision in the analysis of image structure
as been a topic of long-standing interest in the biological
nd computer vision science community (e.g., see recent
eview by Regan1). At issue is the extent to which color
ision provides information about the spatiotemporal
tructure of the visual world, rather than just information
bout the color, or hue, of its surfaces. There are a num-
er of approaches to this issue, and one that is increas-
ngly influential involves the analysis of the statistical in-
ormation in the chromatic content of natural scenes and
elating this information to the known behavioral and
hysiological properties of the color vision system.2–5 This
pproach extends studies examining the statistical con-
ent of achromatic natural images,6–10 and is predicated
n the widely held belief that the visual system has
volved to code the useful information in the visual envi-
onment in an optimally efficient manner.2,6,10–18

In daylight vision the retinal image is transduced by
hree photoreceptors, the L (long-wavelength-sensitive),

(middle-wavelength-sensitive), and S (short-
avelength-sensitive) cones. The cone outputs are then

ombined into three postreceptoral channels: a
uminance-sensitive channel that sums the outputs of the

and M cones, here referred to as the LUM channel; a
hromatic channel that differences the outputs of the L
nd M cones, commonly referred to as the RG channel;
nd a chromatic channel that differences the outputs of
1084-7529/05/102050-10/$15.00 © 2
he S with the sum of the L and M cones, commonly re-
erred to as the BY channel. These channels have been re-
ealed through psychophysics19–23 and may have a neuro-
hysiological substrate in the early stages of the visual
athway.24–26 Psychophysical studies have shown that
hromatic mechanisms are spatially tuned for both orien-
ation and spatial frequency,20,27,28 supporting the idea
hat the channels have an early cortical representation.

What information about the visual environment do
hese channels convey, and how similar is the information
onveyed in the three channels? Two approaches have
een adopted in previous studies to address these ques-
ions. The first approach has been to examine the differ-
nces between the statistical properties of model LUM,
G, and BY responses to natural scenes—for example,

he differences in the amplitude spectra slopes among the
hree channels.3,4 The second approach has been to con-
ider the relationships between the LUM, RG, and BY re-
ponses to natural scenes by looking at the similarities in
hannel responses to a given image via cross-correlation
nalysis.2,5

It has been recognized that one function of the postre-
eptoral channels is to decorrelate the cone signals, that
s, to remove information in their outputs that is redun-
ant by virtue of the close overlap in the cones’ spectral
ensitivities.2,13 Ruderman et al.2 and Fine et al.5 found
hat the average cross correlation between the RG, BY,
nd LUM channel responses to a set of natural images
005 Optical Society of America
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as close to zero: for example, there was no consistent
endency toward red pixels being bright rather than dark,
r bluish pixels being greenish rather than reddish. How-
ver, the nonrelatedness of the LUM, RG, and BY channel
utputs to natural scenes revealed by cross correlating
heir point responses raises the question of whether cor-
elations exist at the level of higher-order structure. Fine
t al. showed that if one measured the difference between
eighboring pixels within each of the three channels and
iscarded the sign of the difference, the channel re-
ponses were positively correlated in inverse proportion
o the distance between pixels. The reason for positive
orrelations in the unsigned pairwise pixel relationships
s straightforward: objects in natural scenes invariably
iffer in both lightness and color, that is, in both intensive
nd spectral reflectance, and as a result simultaneous
hanges in both of these dimensions will occur at most ob-
ect borders. We might not expect these correlations to be
ery high, however, because of the presence of shading
nd shadows, which are primarily luminance-defined
eatures.29–32 In addition, even through coincident
hanges in color and luminance occur within the image,
or example, at the boundaries of objects, the magnitudes
f those changes may be uncorrelated.

The absence of significant changes in color at most
hadow borders will inevitably reduce the overall esti-
ates of channel cross correlations in unsigned pixel dif-

erences. Nevertheless, the magnitude of the correlations
easured by Fine et al.5 seem surprisingly low, especially

iven that their test images were selected to be devoid of
eep shadows: at 6 pixels separation, average unsigned
ixel-difference cross correlations were 0.24 for LUM-
ith-RG, 0.22 for LUM-with-BY, and 0.17 for RG-with-
Y—an overall mean cross correlation of 0.21. (6 pixels
orresponded to the cited value of 18 arcmin for this re-
ult. The images were 128�128, so 6 pixels also corre-
ponded to 4.7% of image width.) Moreover, these values
ere only slightly larger in absolute magnitude than the

signed” pixel-difference cross correlations, also surpris-
ng because in preserving the sign of each pixel difference,
ne would expect the resultant cross correlations, now
egative as well as positive, to yield a net correlation of
ero. One aim of the present study is to measure the
etween-channel correlations in pairwise structure for a
uch larger set of images, using an approach based on

iologically realistic bandpass-filter responses rather
han differences of adjacent pixel responses. To capture
he spatially coincident nature of the attribute transi-
ions, we have correlated the absolute, i.e., unsigned, as
ell as the signed filter responses.
What of between-channel correlations in image struc-

ure that are of higher order than those defined by pixel
ifferences? An abundance of psychophysical33–37 and
ingle unit neurophysiology38–40 supports the existence of
isual cortex neurons sensitive to changes in dimensions
ther than luminance or color—for example, variations in
ontrast, element size, or orientation—here collectively
ermed “texture variations.” Such texture variations, and
he visual mechanisms that are believed to detect them,
ave typically been designated as second-order in the bio-

ogical vision literature. Note that in a context of image
tatistics, such stimuli might be considered fourth-order,
ecause the detection of differences between textures re-
uires the comparison of at least four image points. How-
ver, following common usage we will refer to stimuli that
ary in luminance or chromaticity (and that minimally re-
uire the comparison of two image points) as first-order
nd stimuli that vary in texture (and that require the
omparison of four image points), as second-order. Analy-
es of unfiltered single points in the image (statistically
peaking, first-order) will be referred to as pixel analyses.

Whereas first-order information in either luminance or
olor can be extracted by a single stage of linear filtering,
ost models of second-order processing use a filter–

ectify–filter (FRF) cascade.33,41,42 In this scheme the
rst-stage filter, which is typically bandpass in spatial
requency and orientation, detects fine-grain luminance
r chromatic detail. The second-stage filter, which is also
andpass in orientation and spatial frequency (but with a
ower center spatial frequency than its first-stage coun-
erpart), detects large-scale variations in textural proper-
ies. This model is supported by both neurophysiology43

nd human psychophysics,37,44–47 in which both the first-
nd second-stage filters are bandpass for spatial fre-
uency and orientation. The intervening nonlinearity or
rectification” stage of FRF acts to demodulate the early-
tage filtered signal. This has a consequence of making
vailable to the second-stage filter the coarse-scale re-
ional differences in the pattern of first-stage responses.
ost FRF models implement the nonlinearity with a full-
ave rectification,41,42 although any nonlinearity will

uffice48,49 provided it contains even-order components.50

By modeling neurons that are spatially linear (i.e., that
etect first-order properties) or operate in a FRF cascade
i.e., that detect second-order properties), it is possible to
tudy the correlations between the lower- and higher-
rder responses to natural scenes51,52 and by extension
etween the lower- and higher-order statistics of the
UM, RG, and BY images of natural scenes.
Here we use simulated neural images of the LUM, RG

nd BY postreceptoral channels to study their correla-
ional relationships in response to a set of natural color
mages. We achieve this by simulating the responses of
ortical neuronlike filters for linear first-order (linear, i.e.,
uminance and color-modulated) and nonlinear second-
rder (i.e., texture and contrast-modulated) information.
e show that while correlations between unfiltered im-

ges sum to near zero, images filtered with either the lin-
ar or the FRF cascade show correlations that vary with
patial frequency. Finally, we consider how the results
ight relate to the behavioral and physiological proper-

ies of the primate visual system.

. METHODS
. Image Set
ighty natural images, representing a variety of natural
nvironments (forest, lake, mountains, meadow, flowers,
nd fruit), taken under a number of different illumination
onditions (sunny and cloudy) and at a number of dis-
ances (0.5–1000 m), were obtained from the McGill Cali-
rated Colour Image database.53 These images were ac-
uired with a digital still camera (Nikon Coolpix 5700)
nd stored as uncompressed RGB TIFF files of dimension
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920�2560 pixels and 24 bits deep (256 levels for each R,
, and B image). All images were acquired using the cam-
ra’s smallest aperture setting �f /11.4�, which minimized
ithin-image differences in focus for images with large
epth fields.

. RGB to LMS Conversion
he images were first gamma-corrected following mea-
urement of the luminance response function of the cam-
ras’ RGB sensors. Each RGB digital image was con-
erted to an LMS image, that is, an image modeled as the
esponses of the human L, M, and S cones. We provide a
rief explanation of the calibration procedure here; more
etailed documentation can be found on the database
ebsite.53

The luminance response function of each RGB sensor
as measured as follows. A set of six gray Munsell papers
ere illuminated by an incandescent light driven by a

onstant-DC power supply and were photographed. The
uminance of the light reflected from each paper was mea-
ured with a Topcon SR-1 spectroradiometer. The average
, G, and B pixel values were plotted against the corre-
ponding measured luminances and fitted with gamma
unctions. These functions were used to gamma-correct
he sensor outputs. In a separate laboratory setting, using
set of nine gray Munsell papers illuminated with a dif-

erent light source and measured with a different photom-
ter, we confirmed the linearity of the gamma-corrected
amera outputs.53

The spectral sensitivities of the three camera sensors
ere measured by taking photographs of a white target
ade of cyanoacrylate powder through a series of narrow-

and optical interference filters spanning the range from
00 to 700 nm at 10 nm intervals. The resulting spectral
ensitivity functions were then gamma-corrected and nor-
alized to produce equal responses to a flat-spectrum

ight. The RGB images were then converted into human
MS cone images via a conventional linear matrix trans-

ormation whose weights were derived from the Smith
nd Pokorny54 human cone spectral sensitivity functions
nd the measured spectral sensitivity functions of the
amera RGB sensors.

ig. 1. Channel image representations. A typical RGB database
re then combined to produce LUM, chromatic RG, and chroma
aximize available range. We also include the edge maps of each
. LUM, RG, and BY Images
n the color vision literature, the postreceptoral channels
re conventionally defined in terms of cone contrasts:
L/L, �M/M, and �S/S. For example, the RG channel is
ften modeled as �L/L−�M/M.22,55–57 The denominator
n each cone contrast term represents the level of cone ad-
ptation and is typically calculated as the cone response
o the luminance of the background upon which the
timulus is presented. These definitions are arguably ap-
ropriate for psychophysical experiments using simple
timuli such as gratings or patches presented briefly and
t low contrast, where one can assume that the adapta-
ion state of the cones is set by the background.

However, cone contrast definitions are arguably inap-
ropriate for natural scenes where cone adaptation levels
re set locally within the image and almost certainly vary
cross its extent. In particular, the RG and BY compo-
ents of natural scenes modeled using cone contrast defi-
itions with fixed denominators will pick up local changes

n pure luminance, such as most shadows. This is because
qual-ratio changes in the three cone responses at pure-
uminance borders will translate into discontinuities in
he cone-contrast-defined chromatic channels unless the
uminance borders are symmetric around the assumed
daptation level. Considerations such as these have led
s to use the following pixel-based definitions of color-
pponent responses, following Parraga et al.3,4 and Olmos
nd Kingdom32:

LUM = L + M,

RG = �L − M�/�L + M�,

BY = S − LUM/S + LUM. �1�

hese channel images were cropped to 512 by 512 pixels
nd were windowed by using a cosine taper to reduce edge
rtifacts (see Fig. 1).
It should be pointed out that our model of the postre-

eptoral channels does not embody many important
hysiological properties of primate vision. First, we have
ot taken into account the differences in spatial resolu-

is first converted into L-, M-, and S-cone-sampled images, which
channel images. Note that channel values have been scaled to

nel image to show the relationships among structural features.
image
tic BY

chan
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ion between the LUM, RG, and BY channels, in particu-
ar the poor resolution of the BY system.58–60 Second, we
ave not modeled the effects of contrast gain controls that
re known to occur at moderate and high levels of channel
ontrast.61 Our channels must therefore be considered as
dealized and our results therefore an approximation to
hannel performance.

. Filter Convolution
he analysis of the first-order characteristics within each
hannel image was based on convolution with a Gabor fil-
er (F0) designed to approximately model the spatial re-
eptive field properties of area V1 neurons (Fig. 2, top).
wo-dimensional Gabor functions10,62 were generated by
he following equations:

g�����x,y� = A exp��x2 + y2�/2�2�cos�2��x/�� + ��,

x = x cos � + y sin �,

y = − x sin � + y cos �, �2�

here � is the spatial wavelength (reciprocal spatial fre-
uency, in pixels), � signifies the phase offset of the sinu-
oidal carrier, � specifies the width of the Gaussian enve-
ope, and � is the orientation of the Gabor. The filter gain
A=1/�2� was chosen to ensure equal amplitude re-
ponses across spatial frequency for a random fractal
mage.10 A set of 48 Gabor filters were selected to cover
he full range of orientations (�=0°, 45°, 90°, 135°) and
hases (�=0°, 90°), as well as a range of wavelengths (�
8, 16, 32, 64, 128, 256 pixels), which correspond to spa-

ial frequencies of 64, 32, 16, 8, 4, 2 cycles per image (cpi).
The second-order characteristics within each channel

ere analyzed with a FRF cascade, using Gabor spatial

ig. 2. Example of first-order model (top) and FRF cascade (bott
abor filter to detect luminance/chromatic variations. The FRF (

requency Gabor filter (F1) whose square rectified response is the
o detect luminance/chromatic texture variations. In this exampl
cale) have the same orientation, phase, and spatial frequency.
lters as in Eq. (2). The response image of the first-stage
lter (F1) was subjected to a static nonlinearity, and then
onvolved with a second-stage filter (F2) (Fig. 2, bottom).
he nonlinearity was an expansive power function

square law) defined by

�Input of F2� = �Output of F1�2. �3�

he Gabor filters encompassed the full range of orienta-
ions as for first-order analysis, with the first- and second-
tage filters having equal orientation. The wavelength
�F1� of the first-stage filter ranged from 8 to 64 pixels
spatial frequency 64–8 cycles per image), and �F2 for the
econd-stage filter ranged from 32 to 256 pixels (spatial
requency 16–2 cpi). The first- and second-stage responses
ere averaged over filter phase, as previous studies have

hown phase to have no significant effect on natural im-
ge responses over an ensemble of images.49 To exclude
iologically invalid combinations, the first-stage filter was
onstrained to higher spatial frequencies than the second-
tage filter (i.e, sfF2	 �sfF1� /2).43,49,52 Therefore the pos-
ible number of filter combinations within the FRF cas-
ade is 96. This gives a total possible number of
orrelations between the first- and second-order filters of
608 correlations per image.

. Statistical Analysis of Filter Responses via Cross
orrelation
orrelation coefficients were calculated between different
rst-order channel responses (e.g., LUM with RG) and be-
ween first- and second-order channel responses (e.g.,
rst-order BY with second-order LUM or BY-with-LUM
hannels). The signed correlation �R� between filter re-
ponse a and b was calculated as

he first-order model convolves each channel image with a single
-order) model convolves each channel image with a high-spatial-
olved with a second Gabor (F2) having a lower spatial frequency
rst-order (F0) and second-order (F2) filters (shown at magnified
om). T
second
n conv
e, the fi
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R =
� �axybxy�

�� �axy
2 � � � �bxy

2 ��0.5 , �4�

here axy and bxy are the pixels at location x ,y of the re-
ponses being compared. For the unsigned correlation,
he absolute values of the filter responses (i.e., the full-
ave rectified responses) were compared, which prevents

ancellation between the positive and negative spatially
oincident changes.49 Correlations were calculated on
ig. 3. Correlation between signed first-order channel responses as a function of spatial frequency (cycles per image), averaged over
lter orientation and even/odd phase from an ensemble of natural scenes �n=80�. (a) Circles correspond to correlations between LUM-
ith-RG channels, squares to LUM-with-BY, and triangles to RG-with-BY. For comparison, the solid symbols show the corresponding

orrelations for the raw pixels. Error bars denote the standard error across images and filter responses. (b) Sample of LUM, RG, and BY
lter responses from a typical image ranging from low spatial frequency (left) to high spatial frequency (right), with the filter orientation
f 0° (i.e., vertical) and odd-symmetric phase (90°).
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ach pair of filter responses and then averaged over the
nsemble. The standard error was calculated from the
tandard deviation of the ensemble correlations.

. RESULTS
. Correlations between First-Order Filtered Channel

mages
igned correlations preserve the directionality of re-
ponse and therefore range from −1 to +1. However, the
ign of the correlation at any particular location in the im-
ge depends on the formula used for the chromatic chan-
el. For example, defining the RG channel as �M−L� / �L
M�, or “Green–Red,” rather than �L−M� / �L+M�, or

Red–Green,” would reverse the sign of all RG correla-
ions. Although the direction of the signed correlation is
ot significant in itself, it is important when considering
he underlying physical cause of the correlation (see Dis-
ussion).

Figure 3(a) shows pixel correlations (the rightmost
oints) and signed first-order filter correlations as a func-
ion of filter spatial frequency, with filter responses aver-
ged over all other filter parameters. The pixel correla-
ions are all close to zero, as found in previous studies.2,5

he signed filter correlations, however, are in many cases
ignificantly different from zero, in particular at high spa-
ial frequencies for the LUM-with-RG channels and LUM-
ith-BY channel correlations, and at all spatial frequen-

ies for the RG-with-BY correlations.
The unsigned filter correlations, which can range from
to 1, are shown in Fig. 4. Remember that for these cor-

elations, discontinuities such as bright-red to dark-green
nd dark-red to bright-green contribute positively to the
verall correlation between LUM and RG. The average
orrelation across all channel combinations and all im-
ges is 0.42 �±0.034 S.E.�. The results are similar at mid
nd high spatial frequencies �s.f.
8 cpi�, although they

ig. 4. Correlations between unsigned first-order channel re-
ponses as a function of spatial frequency (cycles per image), av-
raged over filter orientation and phase for the ensemble of im-
ges �n=80�. Responses were full-wave rectified to remove the
irectionality of response. Circles correspond to correlations be-
ween LUM and RG channels, squares to LUM and BY, and tri-
ngles to RG and BY. Error bars denote the standard error across
mages and filter responses.
how differences at lower spatial frequencies �s.f. .
4 cpi�. There were no significant differences in the re-

ults between different filter orientations and between
ven and odd filter phases (results not shown).

. Correlation between First- and Second-Order
hannels
ere we consider the correlations between first-order-
ltered and second-order-filtered LUM, RG, and BY im-
ges. Again, the filter orientations have no effect as long
s both filters (i.e., first-order linear filter and second-
tage filter of FRF) have the same orientation; otherwise,
here was a reduction in correlation, consistent with pre-
ious results for achromatic images.49,51,52

The correlations are plotted in Fig. 5 as a function of
he spatial frequency ratio between responses of the first-
rder filter �F0� and the second-stage filter of the FRF
ascade �F2�. The signed correlations, shown in Fig. 5(a),
re quite small: they range between 0 and 0.15
±0.03 S.E.� and are similar to those obtained previously
or purely achromatic images of natural scenes.49 The cor-
elations for other channel combinations (i.e., chromatic
econd-order) are effectively the same and so will not be
hown here.

The results for the corresponding unsigned correlations
re shown in Fig. 5(b). The correlations for the LUM im-
ges (circles) display a peak at a spatial frequency ratio
F0/F2� of 2:1, in keeping with our previous findings for
chromatic images,49 though if anything the dependence
ere is more peaked, perhaps owing to the larger number
f images analyzed. The maximum correlation was 0.62,
ith the average correlation being 0.38 �±0.023 S.E.�.
The first-order RG and BY images are also well corre-

ated with the second-order LUM images and show a
imilar though less pronounced peak around F0/F2=2:1.
he maximum correlation for RG-with-LUM is 0.53, with
n average 0.38 �±0.01 S.E.�, and the maximum correla-
ion for BY-with-LUM is 0.45, with an average 0.36
±0.009 S.E.�. In all three plots, the correlations decline
apidly beyond the 2:1 ratio. In contrast, correlations be-
ween any of the first-order filtered images (LUM, RG, or
Y) with second-order RG [Fig. 5(c)] or BY images [Fig.
(d)] show little dependence on spatial frequency ratio
nd a slightly lower average of 0.33 �±0.003 S.E.�. This
ould suggest that for certain second-to-first-order spa-

ial frequency relationships, first-order information is
ore strongly correlated with second-order luminance

han with second-order chromatic information.

. DISCUSSION
o summarize:

1. Average pixel correlations between the raw channel
mages are all close to zero.

2. Signed first-order correlations are in many cases
ignificantly nonzero, indicating systematic tendencies of
ome colors to be lighter or darker than others.

3. Unsigned first-order correlations are significantly
ositive.
4. Correlations between signed first- and second-order

lter responses are close to zero.
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5. Correlations between unsigned first-order (LUM,
G, or BY) and second-order LUM images peak at a first-

o-second-order spatial frequency ratio of approximately
:1.
6. Correlations between unsigned first-order (LUM,

G, or BY) and second-order RG and BY are less pro-
ounced and largely independent of the first-to-second-
rder spatial frequency ratio.

he discussion will deal first with the pixel and signed
rst-order correlations, second with the unsigned first-
rder correlations, and finally with the first-with-second-
rder correlations.

. Pixel and Signed First-Order Correlations
hile some previous studies have found strong between-

hannel pixel correlations for particular subclasses of im-
ge, for example between BY and LUM channels for arid
cenes63,64 or between RG and LUM channels for reddish
cenes,65 our pixel-correlation results obtained from a
arge variety of images reinforce the conclusion that over-
ll, the postreceptoral channels of the human visual sys-
em decorrelate the cone responses to natural scenes.2,13

ig. 5. Correlation between first-order (F0) and second-order (F2
nsemble of natural scenes �n=80� and averaged across other fi
ate-stage (F2) of the FRF ratio equals 8:1 or 4:1 (optimal ratios o
rder channels (LUM, RG, BY) with second-order LUM; (b) unsi
igned correlation with second-order RG; (d) unsigned correlation
ate more strongly with second-order luminance channel than wi
On the other hand, our results with Gabor-filtered im-
ges reveal significant, albeit for the most part modest,
etween-channel correlations, with a pronounced spatial
requency dependence. The fact that none of these signed
orrelational relationships is observed in the pixel corre-
ations reinforces the importance of looking at filter cor-
elations across a range of spatial scales.

Inspection of individual channel images provides hints
s to the possible cause of these correlations. For ex-
mple, in Fig. 3(b), the low-frequency energy in the image
s due primarily to the presence of the red fruit against
he green foliage. Because the fruit is relatively bright
nd the foliage dark, there is a signed, positive correlation
etween LUM and RG for this image. The positive LUM-
ith-RG correlation found across the ensemble of images

hown in Fig. 3(a) is probably due to the presence of simi-
ar object relationships throughout our image set.

The spatial-frequency-dependent pattern of correlation
etween LUM and BY [Fig. 3(a)] might arise from shad-
ws. It is often stated that shadows tend to be bluish,4,66

ecause they are relatively more illuminated by blue sky-
ight. However, the reverse situation appears to hold for
he shaded regions of dense foliage. Inspection of the BY

nses as a function of spatial frequency ratio, averaged across the
rameters satisfying the constraint that the early-stage (F1) to

49 with similar response): (a) signed correlation of all three first-
orrelation for all three channels with second-order LUM; (c) un-
second-order BY. Note that first-order chromatic channels corre-
er of the second-order chromatic channels.
) respo
lter pa
f FRF

gned c
with
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esponse in Fig. 1 and the other images in our set that
ontain foliage show that the shaded parts of the foliage
re shifted slightly toward the yellow end of the BY spec-
rum, i.e., are less bluish. The reason for this may be that
he top surface of many leaves have a specular reflectance
omponent, and the daylight they reflect will have a
igher proportion of short wavelengths. On the other
and, light emanating from the shaded regions of foliage
ill have undergone multiple absorptions and reflections
nd will tend to have a narrower spectrum centered
round green. Hence the light emanating from the more
haded regions in foliage will stimulate more the yellow
nd of the BY mechanism. Thus at the higher spatial fre-
uencies in dense foliage, the relatively yellowish fine-
rained shadows might give a negative LUM-with-BY cor-
elation; in contrast the blueish object shadows at low
patial frequencies would give a positive LUM-with-BY
orrelation.

Finally, the RG-with-BY filter correlations reveal that
ed tends to be associated with yellow, and green with
lue, across a range of spatial frequencies. This might be
ecause sky tends to stimulate the blue end of the BY and
he green end of the RG channel, while the ground tends
o stimulate the yellow end of the BY and the red end of
he RG channel.

. Unsigned First-Order Correlations
s pointed out in the Introduction, pixel-based correlation
easures do not capture many of the visible structural

imilarities between channel images, and neither will
igned filtered-channel correlations because their positive
nd negative correlations will often cancel when aver-
ged. Unsigned filter correlations, however, do capture
uch of the visible structure because discontinuities that

re coincident across channels will be picked up irrespec-
ive of their individual signs. When averaged across a
ange of filter spatial frequencies and orientations and
cross the three types of channel cross correlation, our
nsigned cross-channel correlation was 0.42. This is more
han double the value obtained by Fine et al.5 for
etween-channel correlations of pixel differences at six
ixel separations (see Introduction). Why the difference in
esults? The first possibility concerns the metric used to
efine the channels. Fine et al.5 used Ruderman et al.2

etrics for the RG, BY, and LUM channels, which were
efined in terms of combinations of logarithmically trans-
ormed cone responses. This differs from the color metric
e employ, particularly with regard to the LUM channel

see Methods). To test whether the difference in metric
ould account for the difference in mean channel cross
orrelation, we measured the mean channel cross correla-
ion for a sample of ten images using both our metric and
hat employed by Ruderman et al.2 The values obtained
ere 0.47 �±0.093 S.E.� for our metric and 0.49

±0.075 S.E.� for Ruderman et al.’s metric, suggesting
hat the difference in metric was not the cause of the dis-
repancy.

The most likely cause of the discrepancy between our
esults and those of Fine et al. is the difference in method
f measurement. We employed an array of Gabor filters,
cross a range of scales and orientations, which respond
ore specifically to the locally oriented structure of edges
nd contours in natural images than randomly chosen
airs of pixels, while their Gaussian envelopes will make
hem less sensitive to uncorrelated pixel noise. We cannot
ule out, however, that the discrepancy could be due to
ur use of a different (and/or larger) set of images.

Recent neurophysiological findings bear upon the sig-
ificant unsigned correlations we have observed between
he chromatic and luminance components of images.
ohnson et al.67 found that of those cells in macaque V1
hat responded to color contrast, most also responded to
uminance contrast. Both simple cells, which are sensitive
o contrast sign, as well as complex cells, which are insen-
itive to contrast sign, were found with these properties.
oreover, the spatial frequency and orientation tuning of

hese “color-luminance” cells was similar in both dimen-
ions. Johnson et al.67 suggested that the color-luminance
ells would be especially suitable for detecting object
oundaries, where color and luminance contrasts are spa-
ially coincident. Note that the high correlation between
nsigned channel responses does not imply that color-

uminance cells should be mainly insensitive to contrast
ign. Our reason for analyzing unsigned responses was to
eveal the presence of significant amounts of coincident
iscontinuities between the chromatic and luminance
hannels that would otherwise tend to be lost due to can-
ellation between positive and negative correlations in
he averaging process. More recently, Horwitz et al.68 also
ound color-luminance cells in macaque V1; and, interest-
ngly, of those sensitive to S-cone-isolating stimuli (i.e.,
he BY chromatic direction), many were sensitive to the
ign of S-cone, but not luminance, contrast. Again, we
ave observed significant unsigned correlations between
Y and LUM, and it is these coincident discontinuities in
Y and LUM that would be expected to elicit strong re-
ponses in these cells.

Does the presence of significant first-order unsigned
orrelations imply a degree of redundancy in the struc-
ure of the LUM, RG, and BY components of natural im-
ges? The answer is yes, but it is a redundancy that is ex-
loited by the human visual system. Chromatic borders,
nd those luminance borders that are aligned with them,
enerally arise from changes in surface reflectance,
hereas luminance borders that are nonaligned with

hromatic borders generally arise from shadows and
hading.29–32 Recent studies have indicated that the vi-
ual system has knowledge of these relationships and
ses this knowledge to help segment the scene into its “in-
rinsic images,”69 that is, into reflectance and illumina-
ion layers, and to facilitate tasks such as shape-from-
hading and shadow identification.66,70,71 In terms of the
resent study, unsigned LUM and chromatic (particularly
G; see below) discontinuities that are aligned and that

herefore contribute to an overall positive cross orrelation
re likely interpreted by the visual system as reflectance
hanges, whereas unsigned LUM discontinuities that are
onaligned and that therefore do not contribute to the
ross correlation are likely interpreted as shadows and
hading.

. First-with-Second-Order Correlations
he positive unsigned correlations between LUM first-
nd second-order responses supports the findings of our
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revious study dealing with achromatic natural scenes.52

oreover, the 2:1 first-to-second-order spatial frequency
atio that produced the highest correlation (0.63) echoes
nalogous findings in neurophysiology43 and
sychophysics.37,44–46 The results here, however, show
hat in natural scenes texture borders are often aligned
ith chromatic as well as with luminance borders.
The relationship between textural (i.e., second-order),

uminance and chromatic variations in the retinal image
f natural scenes is complex. Some textural variations, in
articular those defined by changes in local orientation,
an result from changes in surface orientation,72,73 and
hese will sometimes be accompanied by luminance
hanges due to shading74 but not by chromatic changes
ince these generally arise only from changes in surface
eflectance. On the other hand, some texture borders
rise from changes in surface material, and these will of-
en be accompanied by changes in both luminance and
olor. On these grounds we might therefore expect the un-
igned second-order LUM images to be more highly corre-
ated with the unsigned first-order LUM images than
ith the unsigned first-order RG and BY images. Our re-

ults do indeed show such a difference in the peak-ratio
rst-order- to second-order-LUM correlations. These cor-
elations are ordered LUM�RG�BY, though the differ-
nces are not large (0.62, 0.53, and 0.45, respectively).
he lack of a peak-ratio correlation between first-order
nd second-order chromatic responses is consistent with
he idea that at fine scales, chromatic information is too
oisy to convey information about texture but instead
rovides information about the broad-scale structure
ithin a scene. Conversely, the luminance channel does

onvey information about the fine-scale structure in the
cene.
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