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Abstract

Recent research on texture synthesis suggests that characterisation of those properties of textures to which human observers are
sensitive may be provided by the histograms of the coefficients of a wavelet decomposition. In this study we examined the
properties of wavelet histograms that affect texture discrimination by measuring observer sensitivity to differences in the wavelet
histograms of synthetic textures. The textures, generated via Gabor micropattern synthesis, were broadband, with amplitude
spectra that are characteristic of natural images, i.e. 1/f. We measured texture-difference thresholds for three moments of the
wavelet histograms — variance, skew and kurtosis — by manipulating the contrast, phase, and density, of the Gabor elements
used to construct the textures. Observers discriminated more efficiently between textures that had differences in kurtosis, than
between textures that had differences in either variance or skew. Performance was compared to two model observers; one used
the pixel-luminance histogram, the other used the histogram of the output of wavelet-filters. The results support the idea that the
visual system is relatively sensitive to the kurtosis, or 4th moment, of the wavelet histogram of textures. We argue that higher than
4th-order moments will, in practice, become increasingly difficult for the visual system to represent because the lack of a perfect
match between the elements and the receptive fields effectively blurs the response histogram, thereby attenuating higher moments.
© 2001 Published by Elsevier Science Ltd.
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1. Introduction

Although there is no universally accepted definition
of texture, there is general agreement that textures
consist of aggregations of small elements that are uni-
form in at least some of their image statistics. These
statistics may include orientation, colour, spatial fre-
quency, density, and contrast. Understanding which
statistical properties are important for the perceptual
discrimination of textures is pertinent to both vision
science and computer graphics.

Recently, a number of studies have reported consid-
erable success in synthesising complex natural textures
(e.g. Heeger & Bergen, 1995; De Bonet, 1997; Simon-

celli & Portilla, 1998; Portilla & Simoncelli, 1999). In
these studies a particular subset of the statistical prop-
erties of a complex natural texture (e.g. a field of grass)
are measured. These statistics are then used in the
synthesis of a new image that contains what it is hoped
are the important texture properties, though not neces-
sarily all the properties, of the original pattern. To the
extent that the method is successful, the synthesised
textures will appear to be examples of textures drawn
from the same population (e.g. similar fields of grass).
In many cases, the synthetic patterns are perceptually
equivalent to the originals; at least prior to attentive
scrutiny. However, the approach, which may succeed
for some textures, fails for others; there is often a
dependency on the structure of the particular natural
texture that is not reflected in the measured subset of
statistics. Although our goal here is not to produce, or
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test, a model of texture synthesis, the variability in
success of current methods for the efficient cloning of
new examples from a given texture invites the question
of which statistics are important for perceptual
equivalence.

1.1. Order statistics in texture discrimination

Some of the earliest work on texture segregation was
that of Julesz and colleagues (e.g. Julesz, Frisch,
Gilbert, & Shepp, 1973), who attempted to describe
textures by means of a set of ‘nth-order’ combinatorial
relationships among pixel values. Use of the ‘order’ of
statistics is common to a number of scientific fields, and
is common to a number of approaches to the descrip-
tion of image and texture properties. But the definition
of an ‘nth-order’ statistic varies. For Julesz, a 1st-order
statistic is a representation of the pixel histogram, a
2nd-order statistic is a measurement of the relationship
among pairs, or dipoles, of pixels, a 3rd-order statistic
is a measurement of the relationship among triplets
(tripoles) of pixels, and so on. In his early work, Julesz
suggested that all the statistics relevant to perceptual
equivalence of textures were found in the 1st- and
2nd-order relationships. However, later, he and others
demonstrated that textures differing only in higher-or-
der Julesz statistics could be effortlessly discriminated
(reviewed in Bergen, 1991). (A recently highlighted
problem with these studies concerns the assumption
that the texture pairs had identical dipole statistics.
Chubb and Yellott (2000) claim that any discreet image
can be completely specified by its dipole statistics (see
also Gagalowicz, 1981; Yellott, 1993 and Section 4).

There is sometimes confusion between the definition
of the order of statistics as described in the above
paragraph and the moments of a distribution. For
example, a statistical measure of ‘nth-order’ can refer to
the value of the largest exponent of the polynomial
describing a function, often referred to as the moment
of the function. Thus, the variance of a pixel histogram
would be a 2nd-order statistic of the image because it is
a function generated from the squares of the pixel
amplitudes. By this measure, the variance, skew and
kurtosis (the 2nd, 3rd, and 4th moments) are examples
of 2nd-, 3rd- and 4th-order statistics since the defini-
tions use the following powers of the exponents:

Variance=%
N

i

(xi−m)2/N

Skew=%
N

i

(xi−m)3/N

Kurtosis=%
N

i

(xi−m)4/N

where xi is the value of the ith member of the distribu-
tion, m the mean of the distribution and N the number
of values.

Although the above two definitions of ‘nth order
statistic’ are not equivalent, a more general description
encompasses both of them. By allowing ‘n ’ to represent
the components, a 4th-order statistic would include
(x1, x2, x3, x4) as with the relational statistics, or
(x1, x1 x1 x1) as with the 4th moment, and might also
include (x1 x1, x2, x3) or (x1, x1 x1, x4). However, in this
paper we want to make a distinction between what we
describe as combinatorial statistics, describing activity
dependencies between different vectors (e.g. different
neurones), and histogram statistics as defined by the
moments. If we take the example of neuron activity, the
moments capture the activity distribution of all the
cells, or the activity distribution within a class of cells,
and the combinatorial statistics describe the relative
activity of different cell types as a function of distance.
In this paper we explore how much information about
the histogram is available to the visual system. We ask
how accurately the visual system represents the shape
of this histogram.

When discussing the ‘order’ of statistics used to
describe an image, it is important to consider the nature
of the basis functions that are used to represent the
image. For example, we can describe an image by the
magnitudes of pixel values. We can also completely
describe an image by the amplitudes of all of its com-
plex Fourier coefficients. We can thus discuss the ‘1st-
order’ combinatorial statistics of the pixels as described
by the pixel histogram, or we can discuss the 1st-order
combinatorial statistics as described by the histograms
of the Fourier amplitudes. However, these two 1st-or-
der histograms do not provide the same information.
What may be a high order combinatorial statistic for
one basis set may be a relatively low order combinato-
rial statistic for another set. The proposal that the
visual system uses only 1st- and 2nd-order combinato-
rial relationships (as first proposed by Julesz) may
indeed be true, once the texture is defined using an
appropriate basis set. When wavelet basis functions are
used to describe a texture, the 1st-order (histograms)
and 2nd-order dipoles (combinatorial relations) may
well be sufficient to characterise the perceptually impor-
tant properties of textures.

There are several reasons why Gabor (or similar —
the Gabor is a Gaussian windowed sinusoid) wavelets
may be effective in characterising the perceptual prop-
erties of textures. They provide a reasonable match to
what are understood to be the properties of ‘simple’
cells in primary visual cortex, and if the early stages of
texture analysis begin here, then these units of descrip-
tion may allow a relatively efficient description. It has
been argued that the wavelet description is a statisti-
cally efficient description of natural scenes (e.g. Field,
1994), allowing a scene to be represented with a rela-
tively independent sparse number of active elements.
For these reasons, it would not be surprising to dis-
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cover that the perceptual properties of natural textures
could be described with a relatively ‘low-order’ wavelet
analysis.

In this study we focus on the 1st-order combinatorial
statistics of textures using Gabor wavelet basis func-
tions. Following from our own work (Field, Hayes, &
Hess, 1993; Kingdom & Keeble, 1996, 1998; Field,
Hayes, & Hess, 2000) and the work of others (Noth-
durft, 1985, 1991; De Bonet, 1997), we believe there are
reasons that the 2nd-order combinatorial statistics (re-
lations among pairs of wavelets) are relevant to texture
discrimination. However, here we address the question
of what aspects of the 1st-order combinatorial statistics
— the wavelet-contrast histogram — are relevant to
texture discrimination.

1.2. Positional 6ariation blurs the wa6elet-contrast
histogram

The term ‘wavelet-contrast histogram’ has two mean-
ings in the context of the present study. The first is as
a description of the distribution (i.e. relative frequen-
cies) with which various contrasts of a particular
wavelet are chosen when synthesising an image. Be-
cause our wavelet textures comprise elements of many
sizes and orientations, it is also possible to create
textures in which different element types have different
contrast histograms. The first meaning of ‘wavelet-con-
trast histogram’, therefore, describes the histogram or
histograms used to synthesise an image (i.e. the input).
The second meaning of the term is as a description of
the output of a wavelet transform of an image. In this
case, the histogram describes the distribution of the
various response-strengths (contrasts) of a given
wavelet when convolved with the image.

The distinction between the ‘input’ and ‘output’
forms of the wavelet-contrast histogram is an important
one that does not arise with pixel textures, whose input
and output histograms are identical (the pixel-lumi-
nance histogram describes the frequencies of all pixel
intensities in the image). Indeed, generating an image
by summing a set of randomly positioned functions
drawn from a particular wavelet-contrast histogram is
not likely to generate images with the same output
histogram, even when a wavelet transform of the same
type is used as both the input and output. Consider the
trivial case where an image consists of a single mi-
cropattern (e.g. a single Gabor function) on a blank —
DC — field, that is then analysed using a wavelet
transform whose basis-function shape is matched to the
micropattern. If the neighbouring wavelet basis func-
tions are orthogonal (two functions are said to be
orthogonal when their summed cross product is zero)
and a matching wavelet function is placed precisely
over the micropattern, then the output of the wavelet
transform will be represented by a single active unit. In

this case the input (one micropattern) with equal the
output (one active unit).

However, usually there is no reason to expect any
input element to fall precisely on a filter. Furthermore,
from the point of view of the visual system, there is no
reason to expect the visual system’s receptive fields to
be orthogonal. If the basis set is non-orthogonal (like
the Gabor basis set used here), or the input micropat-
tern does not align precisely with the wavelet trans-
form, the set of wavelets that overlap with the input
element in space, orientation, and spatial frequency,
will be activated. The wavelet-contrast histogram that
goes in will then not be the histogram that comes out.
Rather, the energy of the single input element will be
distributed over neighbouring wavelet filters. Thus, the
output wavelet-contrast histogram will be, essentially, a
blurred version of the histogram used to generate the
texture.

This distinction between input and output wavelet-
contrast histograms is particularly important when one
considers the higher moments of the wavelet-contrast
histogram. The higher moments (\2nd) capture the
various ways in which a particular histogram can vary
from a Gaussian distribution of a particular mean and
variance. In our wavelet textures, we have concentrated
on the 2nd, 3rd, and 4th moments of the Gabor
wavelet-contrast histogram. These moments are manip-
ulable in a relatively straightforward manner – by
varying the contrast, phase and density of the compo-
nent wavelets. What of, say, the 5th, 6th and higher
moments? How might these statistics be manipulated
without affecting the lower moments? Chubb,
Econopouly, and Landy (1994) (see also, Chubb &
Landy, 1991) developed a technique which influenced
the present study. Using pixel-noise textures, they inde-
pendently manipulated up to the 7th moment of the
pixel luminance histogram by pre-defining each his-
togram shape as an orthogonal (Legendre) polynomial
probability density function, and then randomly se-
lected luminances from them. Thresholds were mea-
sured for the discrimination of textures with histogram
shapes that differed in a given moment. One of the key
differences between their stimuli and ours is that their
texture elements — pixels — are discrete and orthogo-
nal. It is possible to render differences in particular
higher-order moments of wavelet textures (e.g. only the
5th or 6th moments) providing those wavelet elements
are discretely positioned and the positions and shapes
of the filters are precisely matched to the positions and
shapes of the elements. However, as we point out
above, the effect of randomly positioning the Gabor
elements in our textures is to blur the output wavelet-
contrast histogram. Higher-order histogram moments
in the output are more vulnerable than lower-order
moments, and so selecting micropattern contrasts from
a higher-order polynomial function is ineffective.
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It is important also to realize that the aim of Chubb
et al. (1994) was to derive the point-wise, luminance,
transducer function, employed by the visual system to
process noise patterns, rather than compare the dis-
crimination efficiency for texture pairs with different
pixel-luminance histogram shapes. Their data did re-
veal, though, that the higher the moment, the more
difficult the discrimination. However, without a com-
parison of human data to some measure of the amount
of physical histogram information available to the cor-
tex, the relative efficiency with which different moment
statistics can be processed cannot be determined. More-
over, we argue that the histograms of activity available
to the cortex will show little evidence of these higher-
order moments.

1.3. Aim of study

In the present study we measured perceptual sensitiv-
ity to the 2nd, 3rd, and 4th moments of synthetic
Gabor-micropattern textures, examples of which are

shown in Fig. 1. We also measured discrimination
sensitivity to these textures relative to model observers
that used pixel histograms and wavelet histograms
based on Gabor filters with the same properties as the
elements.

Our textures were constructed from the addition of
Gabor elements of various orientations, spatial scales,
phases, and contrasts. However, the elements at differ-
ent scales were derived from the same mother element,
with different scales and orientations created by alter-
ing only the overall size and orientation. These textures
embody many of the properties of stochastic, natural
textures; they are broadband, and they have an ampli-
tude spectrum that falls proportionately with spatial
frequency (1/f ) (see Field, 1994). We used the
paradigm of Chubb et al. (1994), and measured sensi-
tivity in texture discrimination as a function of differ-
ences in the shapes of the histograms. Manipulating the
properties of the elements themselves — their con-
trasts, phases, and densities — altered both the pixel-
luminance and wavelet-contrast histogram shapes.

Fig. 1. Examples of wavelet textures used in the experiment, and their pixel luminance histograms. The top pair have the same mean luminance,
but differ in r.m.s. contrast, and hence histogram variance. The middle pair are made from different phase Gabors; black-on-centre (left) and
white-on-centre (right); their histograms have the same mean and variance, but differ in skew. The bottom pair have the same mean and r.m.s.
contrast, but differ in wavelet density; their histograms have the same mean, variance, and skew, but differ in kurtosis. All textures have fractal,
1/f, Fourier power spectra. Apart from the top two textures, the textures also have identical Fourier power spectra.
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2. Methods

2.1. Stimuli

2.1.1. Generation
A VSG2/3F video-graphics card (Cambridge Re-

search Systems), hosted by a Gateway 2000 P5 com-
puter, generated the stimuli, which were displayed on a
BARCO Calibrator monitor.

2.1.2. Calibration and contrast resolution
The VSG2/3F can display images with 256 intensity

levels per RGB gun, selected from 12-bit (4096 levels)
linearised colour look-up-tables (CLUTs). We sepa-
rately calibrated the three RGB guns, and the CLUTs
were generated such that when the three RGB 8-bit
grey levels were set to be equal, the display was black-
white. Calibration was carried out using the Cambridge
Research Systems optical system, which generates the
12-bit g-corrected CLUTs. The 12-bit CLUTs provided
a contrast resolution of about 0.05% throughout the
monitor range (see Kingdom & Whittle, 1996), which is
sufficient for measuring contrast thresholds. Whatever
the contrast of the stimulus, it was always displayed
with the full 8-bits; the range of values was suitably
selected from the 12-bit CLUTs.

2.1.3. Gabor elements
Multiplying a sine function by a two-dimensional

Gaussian envelope generated the Gabor elements:

L(x, y)

=M+A cos [2p f(x cosu−y sinu)+r ]

× exp [− (x2+y2)/2s2], (1)

where M is the mean luminance, A is the amplitude, f is
the luminance spatial frequency; u is the orientation, r

is the phase; and s, is the S.D. of the Gaussian envel-
ope (which was circularly symmetric). All Gabor ele-
ments had a spatial frequency bandwidth at half-height
of 1.6 octaves and an orientation bandwidth at half-
height of 60°. Contrast was defined as peak amplitude,
A, divided by the mean, M. The mean luminance of the
elements, M, and the background luminance, was set to
35 cd m−2, unless otherwise specified. Full details of
micropattern parameters are given with the description
of each experiment.

2.1.4. Wa6elet textures
Examples of wavelet textures are shown in Fig. 1.

They were each 192×192 pixels, and subtended 4.3×
4.3° at the viewing distance of 100 cm. Their generation
was based upon the following function:

I(x,y)=d%
12

u

%
4

r

%
2(s−1)

f s

G(A, f,s,u,r,x−xr,y−yr), (2)

where G represents a Gabor micropattern (a wavelet)
with parameters A, f, s, u, r, as defined above, whose

x–y position in the texture was randomised, as given by
xr and yr. In the standard condition the total number
of wavelet orientations (u) and phases (r) was 12 and
4, respectively. The 12 orientations were set at 30°
intervals staring at 0° (vertical). The four phases were 0,
90, 180, or 270°. The total number of different wavelet
spatial frequencies, f, was eight, and these were, in
cycles per image, f=1.0, 1.74, 3.02, 5.25, 9.14, 15.88,
27.61 and 48.0.

In order to create wavelet textures with a 1/f spec-
trum, the relative numbers of wavelets at each spatial
frequency must be proportional to the square of the
wavelet spatial frequency, assuming wavelets of equal
bandwidth and contrast. Put another way, different
spatial frequency wavelets must provide equal coverage.
The number of wavelets at each spatial frequency was
controlled by the term R2(s−1)(s=1, 2,…, 8), where s
indexes the spatial frequency fs, and R is the ratio
between adjacent spatial frequency bands, which in our
textures was 1.74. This formulation leads to equal
coverage for each spatial frequency, since R2(s−1)/ f s

2 is
a constant.

Finally, the parameter d controlled the overall num-
ber of elements in the texture, N, which from Eq. (2) is
given by:

N=48d %
8

s=1

R2(s−1). (3)

The texture we employed with the largest N, Nmax, had
a total number of wavelet elements equal to the number
of pixels in the 192×192 array; i.e. 36 864. To produce
this texture, d was set to 0.221. Because dB1, it follows
from Eq. (2) that not all types of wavelet elements
(eight spatial frequencies, each at 12 different orienta-
tions, at each of four phases) can be represented, since
from Eq. (3), N=167 136 for d=1 and R=1.74. We
avoided potential problems arising from this under-rep-
resentation by sub-sampling the orientations of the
wavelet elements in a lawful manner. For example, in
the case of d=0.221 (Nmax=36 864), the number of
wavelet elements at the lowest spatial frequency was 11.
Given 11 wavelet elements, it was impossible to have
exemplars of all 12 orientations, each at four phases.
Here, the orientations were selected from the set of 12
orientations such as to maximise the range of orienta-
tions covered, and the phases were allocated randomly.

Rather than use d, we employ the parameter D to
define the density of the textures, where D=N/Nmax,
expressed as a percentage. Thus the texture with Nmax

wavelet elements, shown in the bottom left panel of
Fig. 1, has D=100%. All the other textures shown in
Fig. 1 have DB100%.

The contrast of our wavelet-textures is best defined as
the r.m.s. of the luminances of the image divided by the
mean image luminance (Moulden, Kingdom & Gatley,
1990), and for all conditions except the test conditions



F.A.A. Kingdom et al. / Vision Research 41 (2001) 585–598590

Fig. 2. Two wavelet textures, a and b, have the same variance (or r.m.s. contrast) but different numbers of wavelets (i.e. different wavelet
densities), and hence different kurtosis. Texture a has a density D of 100%, i.e the same number of wavelets as pixels, while texture b has a density
D of 2%, i.e. only 1/50th the number of wavelets as pixels. Both textures have been convolved with a vertically-oriented Gabor filter (c), to produce
outputs (d) and (e). The histograms of pixel intensities in d and e are shown in f, and these constitute the wavelet-contrast histograms of the two
textures. The difference in kurtosis between the pixel-luminance histograms of (a) and (b) (not shown) is reflected in the difference in kurtosis in
the wavelet-contrast histograms of (d) and (e).

in the variance discrimination experiment, contrast was
22%, with a S.D. due to stochastic variation of 1.2%.
We set the contrast of each texture by suitable mapping
of the 8-bit grey-level image generated in computer
memory onto the appropriate values in the linearised
12-bit display CLUTs.

2.1.5. Histogram statistics
In the experiments described below, observers were

required to discriminate between pairs of wavelet tex-
tures that differed in the moments of both their pixel-
luminance and the calculated output wavelet-contrast
histograms. For the pixel-luminance histograms, mo-
ments were calculated from the distribution of pixel
values. For the wavelet-contrast histograms, moments
were calculated from the distribution of pixel values in
the convolution output of a wavelet kernel with the
texture.

The kth moment, M, of a histogram is defined as:

Mk=1/N%
N

i

(xi−m)k/M2
k/2 (4)

where m is the mean of the distribution, and N is the
sample size. Variance is computed when k is set to 2,
skew when k is set to 3, and kurtosis when k is set to 4.
The term M2

k/2 normalises the statistic.
The variance, skew, and kurtosis, of the pixel-lumi-

nance and wavelet-contrast histograms were varied as
follows. Variance was manipulated by changing the

contrast of the wavelet texture (see Section 2 for de-
tails). Skew was manipulated by varying the phase of
the wavelet elements. In the experiments involving the
manipulation of skew, only one phase of wavelet mi-
cropattern was present in each texture, unlike in all
other experiments where four phases were present in
equal proportions (0, 90, 180 and 270°). The two ex-
tremes of skew were achieved by, on the one hand,
using bright-on-centre even-symmetric wavelet elements
(r=0), on the other hand, dark-on-centre even-sym-
metric wavelet elements (r=180); intermediate skews
were achieved by intermediate phases. Because the pres-
ence of skew slightly altered the mean luminance of
each texture, we applied DC restoration for each tex-
ture. There are several ways to alter skew, and we have
selected one that is relatively simple. Finally, kurtosis
was manipulated by varying D, the density of wavelet
elements; importantly, while holding the variance
constant.

Fig. 1 shows example wavelet textures that differ in
variance (k=2), skew (k=3), and kurtosis (k=4), in
the ways described above. The pixel histograms of each
pair of textures are shown on the right-hand side of
each texture pair. Fig. 2 shows two wavelet textures
differing in kurtosis that have been convolved with a
Gabor wavelet. The pixel histograms of both convolu-
tion images are also shown, and these histograms con-
stitute the wavelet-contrast histograms.
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2.2. Procedure

A bias-free 2IFC (two interval, forced choice) proce-
dure was employed with a ‘two-up, one-down’ adaptive
staircase that established the threshold difference in the
variable of interest at the 70.7% correct level. This
corresponds to a d %e (e stands for ‘empirical’) measure of
0.78 for a 2AFC task (Macmillan & Creelman, 1991),
and this was the value used in all measures of efficiency
(see below). In the variance-discrimination condition,
observers were required to respond to the interval with
the highest contrast. In the skew condition, observers
were required to respond to the interval in which the
texture had more white and/or less black ‘flecks’. In the
kurtosis discrimination condition, observers were re-
quired to respond to the texture that was sparser.
Feedback — a short tone — was given for an incorrect
decision.

2.3. Model obser6er analysis

The purpose of the main experiment was to assess the
ability of observers to discriminate texture pairs that
differed in the variance, skew and kurtosis of their
pixel-luminance and output wavelet-contrast his-
tograms. We compared human performance with that
of two model observers, whose performances were
based on the appropriate histogram moment. In the
first model, the histogram was of pixel luminance val-
ues, and we term this the pixel-luminance-histogram
model. In the second model, the histogram was of the
pixel values in the convolution response of a wavelet
kernel to the texture, in other words the output
wavelet-contrast histogram. We term this the wavelet-
contrast-histogram model. The kernel was matched in
profile to that of the vertically oriented, highest spatial
frequency, wavelet micropattern used in the textures.
Example convolution responses and their associated
histograms are shown in Fig. 2.

Model-observer performance was calculated as fol-
lows. For each condition, a large number of test and
comparison texture pairs at the empirically determined
threshold level were generated, and the appropriate
statistic (variance, skew, or kurtosis) calculated for each
member of the pair, according to Eq. (4). The mean
and S.D.s of the statistic for both test and comparison
were then calculated over the whole sample. If the
mean values of the statistic k for the test and compari-
son stimuli are mtk and mck, and their S.D.s are skt and
skc, then, assuming that the statistics are normally
distributed over the sample (as expected by the central
limit theorem), the performance of a model-observer,
who chooses the interval for each texture pair which
gives the higher (or lower) value of the statistic, can be
described by the signal-detection-measure d %m (m=
model observer), where:

d %m=
mtk−mck


[(sk.a
2 +sk.b

2 )/2]
. (5)

To illustrate this procedure, Fig. 3 shows the distri-
butions of kurtosis for two textures with densities 3.0
and 2.5%. The D=3% texture was one of the three test
condition densities (see below), and the D=2.5% tex-
ture was the one just discriminable from the test when
kurtosis was the test variable. The kurtosis values in the
top figure have been calculated from the pixel-lumi-
nance histograms, while those in the bottom figure have
been calculated from the wavelet-contrast histograms.,
as described above. Best fitting Gaussian functions have
been fitted to each distribution, and show that the
distributions are very close to normal. Model observer
performance calculated using Eq. (5) essentially pro-
vides an estimate of the separation between each pair of
distributions-the difference between their means divided
by a measure of their average standard deviation. Note
how the distributions of kurtosis values derived from

Fig. 3. Distributions of kurtosis for two wavelet textures whose
densities D (3 and 2.5%) are just discriminable. Each distribution is
based on 1000 sample textures. The kurtosis values in the top figure
have been calculated from the pixel-luminance histograms of the raw
textures. The kurtosis values in the bottom figure have been calcu-
lated from wavelet-contrast histograms (e.g. see Fig. 2), using a kernel
matched to the vertically-oriented, highest-spatial-frequency wavelet
used in synthesising the textures. Best fitting Gaussian functions have
been fitted to each distribution, and show that the distributions are
very close to normal. The performance of a model observer, d %m, is
given by the difference between the means of each pair of distribu-
tions divided by a measure of their average standard deviation (see
Eq. (5)). Note how a bigger d %m is provided by the wavelet-contrast
histograms.
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Fig. 4. Results of experiment. Raw data are shown in the left hand column, and efficiencies with respect to both pixel-luminance histogram, and
wavelet-contrast histogram model observers, are shown on the right. Top, contrast, or variance (k=2), discrimination; middle, phase, or skew
(k=3), discrimination; bottom wavelet density, or kurtosis (k=4), discrimination. For further details see text.

the wavelet-contrast histograms have the greater
separation.

Efficiency of human performance with respect to this
model observer, Fm, is given by:

F=100(d %e/d %m)2 %, (6)

where d %e is the empirically measured value of human
sensitivity, equal to 0.78, the value of d % for a 2AFC
task at the 70.7% correct level (Macmillan & Creelman,
1991).

3. Results

The results for two observers are shown in Fig. 4. In
all figures the data are shown for three wavelet densities
D (3.0, 10 and 30%), where density is defined as the
number of wavelets expressed as a percentage of the
total number of pixels (36 864). Both observers per-
formed similarly on all tasks. The left hand column in

Fig. 4 shows the raw data. The top, k=2 (variance),
and bottom, k=4 (kurtosis), discrimination results are
expressed as Weber fractions (the difference between
test and comparison levels at threshold, divided by the
comparison level), while the middle, k=3 (skew), data
are expressed as the difference in Gabor-sinusoid phase
between the test and the comparison textures at
threshold.

As the figure shows, variance (contrast) discrimina-
tion thresholds were more-or-less constant at around
6% across the nearly 10-fold change in density; skew
(phase) discrimination thresholds increased from about
30 to 75°; kurtosis (density) discrimination thresholds
increased from about 17 to 43%. Although our textures
are made from specified numbers of wavelets, the high
degree of wavelet overlap introduces extrinsic noise into
any internal representation of the texture’s properties.
This extrinsic noise makes the absolute discrimination
results for variance (DV/V), skew (DP), and kurtosis
(DD/D), not very useful for comparison of performance
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between these three statistics. However, a dimensionless
measure of efficiency is useful. The middle column of
Fig. 4 plots the efficiency, F (see Section 2), with which
observers performed the task, compared to a model
observer who computed the variance (Fig. 4, top), skew
(Fig. 4, middle), and kurtosis (Fig. 4, bottom), of the
pixel luminance histogram. While efficiency is less than
100% for discriminating variance and skew in the pixel
luminance histograms of wavelet textures, it is greater
than 100% for the discrimination of kurtosis — the
moment that was manipulated by varying D. This result
shows that a pixel-luminance-histogram model is in-
valid as a description of the basis for human perfor-
mance for the density discrimination data; efficiencies,
by definition, cannot exceed 100%. Although we cannot
rule out the possibility that variance and skew in the
pixel-luminance histogram underlies the basis for dis-
criminating the top and middle texture pairs shown in
Fig. 1, we can rule out this possibility for the bottom
pair, which differ in kurtosis. This \100% efficiency
result shows that the visual system is sensitive to some
property of our wavelet textures that the pixel his-
togram statistics fail to capture.

Consider now the right hand column in Fig. 4, where
efficiencies have been normalised to a model that com-
putes the statistics of a wavelet-filtered set of stimuli,
the wavelet-contrast-histogram model. The filter’s con-
volution kernel was a vertical Gabor matched to that of
the highest spatial-frequency Gabor micropattern used
in making the textures (s=8). Fig. 2 shows the result of
convolving two textures with D=100%, and D=2%,
and the resulting pixel histograms (see also Fig. 3). As
can be seen in Fig. 4, efficiency is now less than 100%
for all conditions, though the ordering of efficiency,
kurtosis\variance\skew, is preserved. Although our
highest-frequency kernel captures more of the informa-
tion in the texture than any of the lower-frequency
kernels, because there are more highest-frequency
wavelet micropatterns in the texture than any other, it
obviously does not capture all the information. The
plotted efficiencies are therefore greater than they
would be if a model were used that performed a
complete wavelet decomposition of the textures. Such a
model would calculate the statistics from the response
histograms of a set of quasi-orthogonal wavelet filters
spanning the full range of orientations and spatial
frequencies of the textures. A model based on a full
wavelet transform would however, at least for the
images we used, result in efficiencies that preserved the
order found for the single-scale wavelet transform. Our
single-scale exercise is instructive, therefore, only in so
far as it demonstrates that a model-observer based on a
wavelet transform is inherently more plausible than one
based on the pixel histogram (as only the former pro-
duces efficiencies consistently less than 100%), and that
the wavelet-histogram kurtosis of our textures appears

to be more efficiently discriminated than is either the
variance or the skew.

4. Discussion

The goal of the study was less to understand the
mechanisms for discriminating textures, than to exam-
ine the case for the importance of higher-order statistics
in texture discrimination. We showed that for a particu-
lar class of textures, human observers were at least as
sensitive, and in some cases more sensitive, to the
higher histogram moments compared to the lower mo-
ments. In addition, we showed that whereas a model of
human performance based on the pixel-luminance his-
tograms of our textures was insufficient (at least for
discriminating their density, or kurtosis), a model based
on the wavelet-contrast histogram was sufficient. This
in no way implies that other basis functions besides
wavelets would not allow equally valid models. How-
ever, it does demonstrate that the visual system is
sensitive to the local pairwise correlations in our tex-
tures that are present by virtue of their wavelet compo-
sition, correlations that a wavelet transform captures
but that a pixel description ignores.

Could our textures, differing ostensibly in only skew
or kurtosis, be discriminated on the basis of their
lower-order statistics? Chubb and Yellott (2000) have
recently claimed that any discreet image has a unique
dipole histogram; that is it has unique Julesz 2nd-order
statistics. However, as Chubb and Yellott are at pains
to point out, this may not be relevant to perception. At
the very least it seems implausible to us that the visual
system would go to the considerable effort of extracting
the higher moments from histograms of 2nd-order com-
binatorial relationships, when in principle those higher
moments were available in the 1st-order combinatorial
histograms.

We are not, of course, the first to demonstrate sensi-
tivity to higher-order statistics in textures. We have
already said in the Introduction that Julesz and his
co-workers published examples of textures discrim-
inable purely on the basis of their higher-order (Julesz)
statistics. More recently, Malik and Perona (1990)
showed that for textures composed of even-symmetric
Gabor elements, texture pairs made from opposite-
phase Gabors were easily discriminable, as is the case
for the middle texture pair in Fig. 1. Graham (1991)
and Graham, Beck, and Sutter (1992) have shown that
in non-stochastic textures consisting of regularly-
spaced, identically-oriented Gabor elements, segrega-
tion occurs when one part of the texture consisted of
Gabor elements arranged in vertical columns, the other
in diagonal columns. Presumably, the two parts of
these ‘second-order’ textures have similar lower-order
statistics, and therefore segregation occurs on the basis
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of higher-order statistics. Of particular relevance to the
present study are also the findings of Durgin and
coworkers (Durgin, 1995; Durgin & Huk, 1997), who
have demonstrated that the visual system can be selec-
tively adapted to different texture densities, which im-
plies the existence of mechanisms that are specialised
for encoding texture density.

What is new in our study is that we have demon-
strated comparable, or even higher, sensitivities to
higher-order statistics in a novel class of textures that
embody many of the properties of naturally occurring
textures. Moreover, because the statistical properties of
our wavelet textures can be manipulated along a con-
tinuum (wavelet-contrast, -phase, and -density, are all
continuous variables), our stimuli are potentially useful
for addressing a wide range of issues in texture
discrimination.

4.1. Current texture models

Which of our wavelet textures would be discrimi-
nated by current models of texture segregation? The
most influential current class of texture model is the
filter-rectify-filter model (see Wilson, 1999 for a recent
review). Fig. 5 shows the principle by which a filter-rec-
tify-filter model distinguishes two natural textures (for
details of particular model implementations see, for

example, Fogel & Sagi, 1989; Malik & Perona, 1990;
Bergen & Landy, 1991; Chubb & Landy, 1991; Landy
& Bergen, 1991; Rubenstein & Sagi, 1993). Each texture
is initially convolved with a ‘1st-stage’ Gabor-kernel;
full-wave rectification, then low-pass filtering to smooth
out the high-frequency ripples in energy, follows. Full-
wave rectification would presumably be achieved physi-
ologically by carrying the excitatory and inhibitory
responses in separate on- and off-centre pathways. The
final intensity maps reveal that the bottom texture in
Fig. 5 has more energy at the chosen filter scale/orienta-
tion than the top texture. The process is repeated (in
parallel) for other filter scales/orientations. A ‘2nd-
stage’ filter is typically employed to detect any differ-
ence in energy between each intensity map when the
two textures abut. This stage is not shown here, since
our textures are non-abutting. Although this model, at
least in its basic form in Fig. 5, would distinguish
between our wavelet textures which differed in vari-
ance, it would not distinguish between those differing
only in either skew or kurtosis, because any differences
in these statistics are not represented in the mean
filter-energy response.

Our results, showing relatively good efficiency at
kurtosis discrimination, argue for an approach to mod-
elling texture segregation which incorporates sensitivity
to skew, and kurtosis. Further support comes from the

Fig. 5. Conventional filter-rectify-filter model of texture discrimination. The two textures in (a) are filtered by a ‘1st-stage’ vertically-oriented
Gabor kernel (b) to produce (c); (c) is full-wave rectified and then smoothed by a Gaussian filter (d), producing the image in (e) whose average
intensity corresponds to the amount of contrast energy in the texture at the 1st-stage filter’s scale/orientation. Note that the lowpass filter is not
the ‘2nd-stage’ filter of conventional filter-rectify-filter models, which employ 2nd-stage filters to detect the borders between intensity maps. Note
also that the effect of rectification and smoothing in (d) is to transform the difference in variance in (c) to the difference in mean intensity in (e).
The procedure shown here is repeated for other 1st-stage scales/orientations, and the gamut of energy-intensity maps (or the signals elicited by
the borders between abutting texture-pairs) used in the decision process. This model however would not distinguish between our wavelet textures
that differ in either skew or kurtosis, since they would have near-identical energy maps at all orientations and scales. The natural textures here
and in other figures are taken from the Brodatz album (Brodatz, 1966).
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Fig. 6. The importance of kurtosis. The natural texture (top left) is filtered by a vertical Gabor kernel to produce (a). (b) is produced by
randomly-positioning thousands of the same kernel, and then equalizing the variance to that of (a). The histograms of (a) and (b) are shown on
the bottom right, and show a marked difference in kurtosis due to the abundance of local structure in the natural texture. The conventional
filter-rectify-filter model in Fig. 5 would fail to distinguish between (a) and (b).

simple demonstration shown in Fig. 6, which illustrates
how relatively high kurtosis (relative to the Gaussian) is
a ubiquitous property of wavelet-filtered natural tex-
tures. High kurtosis in natural textures reflects the
presence of higher-order statistical structure primarily
due to the concentration of energy at edges (in Fig. 6
stones), with less energy in between (Morrone & Burr,
1988; Field, 1994; Thomson, 1999).

4.2. How might skew and kurtosis be discriminated?

Although our wavelet textures that differ in skew and
kurtosis cannot be discriminated using the basic filter-
rectify-filter model shown in Fig. 5, the introduction of
a simple thresholding non-linearity would make dis-
crimination possible. For skew, a threshold imposed on
the response of an even-symmetric, say ‘on-centre’,
filter could convert two images that differ in skew into
two images that differ in contrast energy, thus allowing
a simple filter-rectify-filter model to discriminate the
textures. In the filter-rectify-filter model of Malik and
Perona (1990), thresholding was combined with the use
of half-wave rectification as the intermediate non-lin-
earity; the positive and negative components of the
filtered image were separately represented as two posi-
tive images, and then each was thresholded. Using this
model, textures with positive and negative skew would
be differentially represented in the two half-wave rec-

tified images, prior to any 2nd stage of filtering. A
simple threshold could also be used to discriminate
images with different kurtosis. For an image with high
kurtosis, the high magnitude local structure will get
through the threshold; for an image with low kurtosis,
and the right choice of the threshold, little or no image
structure would pass the threshold. It would be neces-
sary to normalise the filtered images by their average
amount of energy to avoid the confounding effects of
overall image contrast, but with such a proviso, a
simple filter-rectify-filter model could easily discrimi-
nate between low and high kurtosis.

On the other hand, rather than manipulate the form
of the intermediate non-linearity, an extension of the
filter-rectify-filter model might be employed. Fig. 7
shows the idea. The two equal-in-variance wavelet-filter
response patterns in Fig. 7a are full-wave rectified, and
then subjected to a 2nd-stage of bandpass filtering,
using a filter about twice the size of the 1st stage filter.
The 2nd stage filter output is then subjected to the same
steps of full-wave-rectification-plus-lowpass-filtering as
was the 1st stage response in the filter-rectify-filter
model shown in Fig. 5. The more kurtotic texture in
Fig. 7 produces a higher-in-luminance 2nd stage en-
ergy-intensity map.

If one wished to instantiate a segmentation process
based on a difference in kurtosis, one could use a 3rd
stage filter to detect the border between the two inten-
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sity maps shown in Fig. 7e. One could then term this a
‘filter-rectify-filter-rectify-filter’ model. Essential for this
model to succeed would be the removal by normalisa-
tion of any differences in overall energy, or variance,
resulting from the 1st stage, as we have done in con-
structing the images shown in Fig. 7a.

This extension of the basic filter-rectify-filter model
has much in keeping with those models where the
purpose of the 2nd-stage filter is to capture the pattern
of contrast energy within a texture region. Such models
have been advanced to account for the segmentation of
so-called ‘second-order’ textures (Graham, 1991; Sutter
& Graham, 1995; Graham & Sutter, 1998), and the
detection of textures that are sinusoidally modulated in
the critical texture variable (e.g. for contrast modula-
tion, Sutter, Sperling, & Chubb (1995); for orientation
modulation, Kingdom & Keeble (1996) and Gray &
Regan (1998); for spatial frequency modulation, Arse-
nault, Wilkinson, & Kingdom (1999)).

4.3. An alternati6e approach to discriminating wa6elet
textures

The above approach to discriminating the variance,
skew, and kurtosis, in our wavelet textures is under-
pinned by the idea that texture discrimination is a
relatively primitive process, employing mainly feedfor-
ward, and relatively simple, filtering mechanisms. An
alternative approach is that some explication of image

features precedes texture analysis, an old idea central to
the thinking of Julesz (1981) and Beck (1982), and
implicit in the notion of Marr (1982) of the primal
sketch. Kingdom and Keeble (2000) and Kingdom and
Hayes (2000) have recently argued for such an ap-
proach to account for the detection of sinusoidally
modulated textures. In this approach, the feature con-
tent of the elements comprising textures — their orien-
tation, contrast, size, blur, and colour, etc. — is
explicitly derived prior to texture analysis. Feature
analysis may well involve combining information from
a number of 1st-stage filters tuned to various spatial
frequencies and orientations in the same receptive field
location. Texture analysis would then proceed with the
extraction of information about the pattern, or statis-
tics, of each attribute within the texture, possibly re-
quiring selective attention to the relevant attribute.
Inspection of the textures in Fig. 1 may provide clues as
to which feature attributes are salient. For variance, the
contrasts of features would presumably be the critical
attribute. For skew it might be the relative incidences of
small-dark versus small-bright features in the texture.
For kurtosis, a number of features might be used. As
the textures become more sparse, the contrast of indi-
vidual features increases if the overall r.m.s. is held
constant. In addition, there is an increased amount of
featureless space between the elements. Both these
changes in feature content could, in principle, be repre-
sented in a primal sketch description of wavelet tex-

Fig. 7. How a difference in kurtosis in the filtered image might be recovered using an extension of the conventional filter-rectify-filter model. The
filtered image in (a) is first rectified, then re-filtered by a ‘2nd-stage’ bandpass filter, (b), twice the scale of the 1st-stage filter (not shown) which
produced the images in (a). The result is an image that differs in variance rather than kurtosis. This difference in variance could then be detected
by an additional Filter-Rectify-Filter procedure, that is an additional stage of rectification-plus-smoothing (d), to produce the difference-in-mean-
intensity images in (e). However, this feed-forward energy model is only one possible way of discriminating textures with equal variance but
different kurtosis, and in the text we argue for a more feature-based approach.
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tures, and this description used by the visual system to
discriminate the texture pairs.

4.4. Do we need to be sensiti6e to higher-order statistics?

It could be argued that while we are sensitive to the
higher-order statistics in textures, it is sufficient to use
lower-order statistic differences for texture discrimina-
tion, because the gamut of naturally occurring textures
invariably differ in at least their 2nd-order statistics.
First, in some naturally occurring textures, the higher-
order statistics may be the most salient for discrimina-
tion; our data showing that higher-order statistics in
our wavelet textures are more efficiently processed than
power-spectral statistics (2nd order) is consistent with
this possibility. Second, variations in density in the
retinal image projection of a textured surface typically
accompany changes in the depth and orientation of the
surface; density is potentially a ‘shape-from-texture’
cue. Third, the study of texture perception is not re-
ducible to the question of the discriminability of natu-
rally occurring texture pairs. There is also the other side
of the coin — the issue of identicality. Under what
conditions are two textures perceived to be one and the
same? Consider for example grass viewed through mist
as opposed to viewed on a clear day; or viewed from
two different angles. In both situations, the different
views of the grass would result in different lower-order
image statistics (the one viewed through mist would be
of lower contrast, the one viewed from one angle would
have different orientation statistics; both differences
would be revealed as differences in the power spec-
trum). Yet we may want to identify the grass as the
same in all situations, and for this purpose the similar-
ity in higher-order statistics could be used. This, as was
discussed in the Introduction, is the question which
models of texture synthesis are primarily concerned.

5. Conclusion

We have shown that the variance of the wavelet
histogram of a texture is insufficient for discrimination
between textures — we also need to consider the 3rd
and 4th moments. It is possible that we also need to
consider moments higher than the 4th. However, posi-
tional variance and the lack of perfect matching be-
tween filters and elements will tend to blur out
higher-order moments, making it unlikely that mo-
ments above the 4th are useful.

In this paper we limited ourselves to 1st-order Julesz
statistics (i.e. 1st-order wavelet histograms). However,
we believe there are conditions of 2nd-order relation-
ships — over position (e.g. Field et al., 1993; Kingdom
and Keeble, 1996, 1998), and through scale (e.g. Mor-
gan, Ross, & Hayes, 1991; Hayes, 1994, 1998) — that

are important. For example many textures comprise
contours (e.g. hair), and these are presumably salient
features for discrimination. The demonstrations of De
Bonet and Viola (1997) also illustrate the importance of
relationships between vectors for texture discriminat-
ion.

Thirty years ago Julesz proposed that 1st- and 2nd-
order statistics of relationships among pixels may
provide a complete description of what is pertinent to
texture discrimination. This proposal failed. However,
we may find that 1st- and 2nd-order combinatorial
relationships within wavelet histograms may be all that
is needed for texture discrimination.
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