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Two distinct paradigms have characterized most previous studies of texture perception: one has dealt 
with texture segregation, the other with the processing of texture gradients. Typically, studies of 
texture segregation have used stimuli with abrupt textural variations, whereas studies of texture 
gradient processing have used stimuli with smooth textural variations. In this study we have asked 
whether the mechanisms which process abrupt and smooth textural variations are the same, by 
considering whether a simple linear model can account for the detection of orientation modulation in 
micropattern-based textures with three types of modulation: sine-wave (SN), square-wave (SQ) and 
missing fundamental (MF). The MF waveform was constructed by removing the fundamental harmonic 
from a square-wave. We found a clear overall ordering of sensitivity: SQ > SN > MF. We found that 
sensitivity to the SQ and MF stimuli could be predicted very well from the SN data if one assumed 
that the r.m.s, output of a single linear channel underlay the detection of the orientation modulation. 
This suggests that the detection of both abrupt and smooth changes in orientation-defined textures 
is subserved by a common mechanism which mimics the operation of a single linear channel. 

Texture Orientation Linear systems analysis 

I N T R O D U C T I O N  

The study of texture perception is important because 
textural variations across space provide important infor- 
mation about both the location of objects and the shapes 
of their surfaces. Past research into texture perception 
has, broadly speaking, fallen into two categories. One 
category has examined how we segregate textural regions 
which differ along one or more textural dimension, and 
this is perhaps best exemplified by the early studies of 
Beck (1966) and Julesz (1975), as well as a large number 
of more recent studies (e.g. Beck, 1982; Gurnsey & 
Browse, 1988; Vorhees & Poggio, 1988; Rubenstein & 
Sagi, 1990, 1993; Nothdurft, 1991; Malik & Perona, 
1990; Landy & Bergen, 1991; Graham, Beck & Sutter, 
1992; Lamme, Van Dijk & Spekreijse, 1992; Gorea & 
Papathomas, 1993; and see review by Bergen, 1991). A 
second category has examined how we process texture 
gradients, and this is principally associated with the early 
seminal work of Gibson (1950), as well as numerous 
more recent studies (e.g. Cutting & MiUard, 1984; Todd 
& Akerstrom, 1987; Stevens & Brookes, 1988; Buckley 
& Frisby, 1993; Blake, Bulthoff & Sheinberg, 1991). 

*McGill Vision Research Unit ,  Depar tment  of  Ophthalmology,  
Room H4-14, 687 Pine Avenue West, Montreal,  Quebec, Canada  
H3A IAI [Email fred(a~jiffy.vision.mcgill.ca]. 

The computational significance of texture gradients 
for shape-from-texture processing has also attracted 
much interest (Witkin, 1981; Davis, Janos & Dunn, 
1983; Kanato & Chou, 1989; Blake & Marinos, 1990; 
Linderburg & Garding, 1993). It is reasonable to ask 
whether a common mechanism underlies the detection of 
the abrupt changes in stimuli employed in studies of 
texture segregation and the smoothly varying changes 
which characterize stimuli in studies of texture gradient 
processing. A recent study by Kingdom, Keeble and 
Moulden (1995) began to address this issue with respect 
to orientation-defined texture perception. Kingdom et al. 
employed a stimulus consisting of a dense array of 
Gabor micropatterns whose positions were randomized 
but whose orientations were varied systematically across 
the display according to a specified periodic waveform. 
The principal descriptor of performance was the orien- 
tation modulation function, which described the sensi- 
tivity to the orientation modulation as a function of the 
spatial frequency of the orientation modulation. One 
experiment in their study compared orientation modu- 
lation functions for sine-wave and square-wave orien- 
tation modulations. The sine-wave texture exemplified a 
stimulus with smooth texture variations whereas the 
square-wave stimulus exemplified one whose textural 
variations were abrupt. Kingdom et al. found that the 
orientation modulation functions for the sine- and 
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FIGURE 1. Examples of the stimuli, with amplitudes of orientation modulation greater than that used in the experiments for 
illustrative purposes. 

square-wave stimuli were quite similar in shape, 
with the square-wave to sine-wave sensitivity ratio 
being about 1.34 on average. They concluded that 
the similarity in shape of the sine- and square-wave 
orientation modulation functions was consistent with a 
common underlying mechanism. 

In this study we extend the initial findings of Kingdom 
et al. with sine- and square-wave stimuli by comparing 
the detectability of three types of waveform: sine-wave 
(SN), square-wave (SQ) and missing fundamental (MF), 
at a number of spatial frequencies of orientation modu- 
lation, and using a large number of subjects (six). 
Examples of the actual stimuli are shown in Fig. 1 and 
a schematic representation of the underlying waveforms 
is shown in Fig. 2. The missing fundamental is generated 
by subtracting the fundamental harmonic component of 
a square-wave from the square-wave itself (Campbell, 
Howell & Robson, 1971). Comparison of the SN, SQ 
and MF stimuli allows us to consider whether the 
detection of different forms of orientation modulation 
is governed by a common linear model. Campbell and 
Robson (1968) compared the detectability of just SN and 
SQ luminance-modulated  gratings at various spatial 
frequencies and the result they obtained was the first 
decisive piece of psychophysical evidence in support of 
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FIGURE 2. Schematic representation of the stimuli used in the 
experiments. Each waveform describes how the orientations of the 
component Gabor micropatterns change across the stimulus. Below 
each waveform are shown diagrammatic versions of the micropatterns 
with their approximate orientations for a given amplitude of 
orientation modulation, though without the orientation "noise" added 
to the micropatterns in the actual stimuli used in the experiments. 
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the view that luminance vision at threshold :is subserved 
by a set of  independent linear channels tuned to different 
spatial frequency ranges. This hypothesis received addi- 
tional support in later studies by Campbell et al. (1971) 
and Campbell, Howell and Johnstone 0978),  which 
compared the detectability of, and measured the discrim- 
inability between, SN, SQ and MF, luminance-defined 
stimuli. In all these studies, the critical test of whether a 
linear model underlay detection was whether the data for 
the SN stimuli could predict without any free parameters 
the detectability of  the SQ and MF stimuli. We have 
applied the same logic to the detection of orientation 
modulation in our textured stimuli. 

In summary, this study aims to determine whether a 
common linear mechanism exists for detecting both 
abrupt and smooth changes in orientation-defined 
textures, by considering whether the measured sensitivity 
to SN-modulated textures can predict the measured 
sensitivity to SQ- and MF-modulated textures. A brief 
report of  the results of  this study has been given 
elsewhere (Kingdom & Keeble, 1994). 

METHOD 

Subjects 

Six subjects were employed in the experiments. FK 
and DK were highly experienced psychophysical observ- 
ers, while MV, AW, LM and SA were paid volunteers 
who were naive as to the purpose of the experiments. All 
had normal or corrected-to-normal vision. 

Stimuli 

Generation. The stimuli were generated by a 
Macintosh IIfx computer and displayed on a SuperMac 
Trinitron monitor. The display was monochrome and 
was gamma corrected by suitable selection of intensity 
levels from an 8-bit (256 grey levels) look-up-table 
following calibration using a UDT (United Detector) 
photometer. 

Gabor micropatterns. The function for each Gabor  
micropattern was defined as a one-dimensional cosine 
function multiplied by a two-dimensional isotropic 
Gaussian envelope 

L (x,y,O) = M + A cos[2~f(xcosO - y sin0)] 

x e x p [ - ( x 2 + y 2 ) / 2 a 2 ) ] .  (1) 

In equation (1) M is mean luminance, A luminance 
amplitude, f spatial frequency, ~ the space constant of 
the Gaussian envelope and 0 micropattern orientation. 
The centre spatial frequency, f ,  of  the Gabor  micropat- 
terns was 4.8 c/deg when viewed at the standard distance 
of 63cm. ~ was set equal to 0.125deg, giving the 
micropatterns a spatial frequency bandwidth at half- 
height of 0.94 octaves. The Gabor  micropatterns all had 
a contrast of 39%, where contrast was defined as the 
peak amplitude, A, divided by the mean, M. Both M and 
the background were set to 34 cd m 2. 

SN,  SQ and M F  orientation-modulated textures. The 
SN and SQ waveforms were defined conventionally. 

The MF waveform was obtained by subtracting the 
fundamental harmonic component from a square-wave. 
The fundamental harmonic of a square-wave is a sine- 
wave with an amplitude of 4In, or 1.273, times that 
of  the square-wave itself. The three types of  waveform 
are shown schematically in Fig. 2. The corresponding 
orientation of the micropatterns is shown below each 
point on the waveform. 

Examples of  the stimuli employed are shown in Fig. 1, 
although for illustrative purposes they are shown with 
higher amplitudes of orientation modulation than used 
in the actual experiments. Each stimulus was an array 
30 x 7 deg containing 1000 micropatterns. The positions 
of the individual micropatterns within the display 
window were randomized. The orientation of the micro- 
patterns was constrained in that the nominal mean 
orientation of the micropatterns varied along the hori- 
zontal axis of the display according to the specified 
waveform (SN, SQ or MF), with that modulation being 
about the horizontal. The amplitude of orientation 
modulation was determined by how much the orien- 
tation of  the micropatterns changed throughout one 
complete cycle of orientation modulation. For  example, 
an amplitude of orientation modulation of 10 deg im- 
plied that the micropatterns changed by 20 deg through- 
out one complete cycle of orientation modulation. For 
each waveform, amplitude was defined as half the peak- 
to-trough difference in orientation. All micropatterns at 
a given horizontal location were given an orientation 
drawn randomly from a Gaussian distribution of orien- 
tations with a specified mean (determined by the point 
on the waveform) and SD. The SD of the Gaussian 
distribution of orientations was 10deg, and this 
represented the amount of orientation "noise" in the 
stimulus. Where Gabor  patches overlapped, they were 
combined additively. 

Procedure 

A two-interval forced-choice (2IFC) paradigm was 
used in all experiments to measure the threshold 
amplitude of orientation modulation. On each trial two 
displays were presented, each for 107 msec, with a 2 sec 
inter-stimulus-interval. There was one exception, subject 
LM, for whom the stimuli were displayed for 200 msec. 
LM complained during practice trials that the 107 msec 
exposure duration felt uncomfortable, and because her 
performance was also particularly poor at this duration, 
it was decided to increase her exposure duration to 
200 msec. The task for the subjects on each trial was 
to decide which interval contained the stimulus with the 
orientation modulation. The only difference between 
the two stimuli presented on a given trial was in their 
amplitude of orientation modulation, which in the 
comparison stimulus was zero. The method of constant 
stimuli was used with five amplitudes of orientation 
modulation, the magnitudes of  which were determined 
for each spatial frequency of orientation modulation by 
pilot studies. During a given session, which consisted of 
200 trials, only one type of  waveform was presented, but 
the five spatial frequencies of orientation modulation, at 
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each of their five amplitudes, were presented in random 
order. There were seven sessions conducted for each 
waveform, resulting in a total of 280 trials for each 
psychometric function, and thus for each data point. 
The five spatial frequencies were 0.033, 0.067, 0.133, 
0.267 and 0.533c/deg, and for the fixed display size 
these resulted in 1, 2, 4, 8 and 16 cycles of orientation 
modulation respectively. The phase of orientation 
modulation was also randomized on each trial. Sessions 
with different waveforms were presented in random 
order. Feedback on each trial was given in the form of 
a tone for an incorrect decision. 

R E S U L T S  

We fitted cumulative Gaussian functions to the plots 
of percent correct against amplitude of orientation 
modulation and determined the threshold as the ampli- 
tude of orientation modulation giving 75% correct. The 
results are shown in Fig. 3. Each graph plots sensitivity 
to orientation modulation, defined as the reciprocal of 
the threshold amplitude of orientation modulation, as a 
function of the spatial frequency of orientation modu- 
lation. Orientation modulation functions for the SN, SQ 
and MF data are shown together in each graph. As can 
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FIGU RE  3. Results of  experiment for six subjects. Sensitivity, defined 
as the reciprocal of  the threshold amplitude of  orientation modulation, 
is plotted as a function of  the spatial frequency of orientation 
modulation. [] SQ; • S N ; / ~  MF. Vertical lines are upper and lower 
SEs of sensitivity obtained from the threshold SEs provided by the 

psychometric function fitting procedure. 

be seen, the data in all but LM's case shows a clear 
hierarchy of performance: SQ > SN > MF. The SN and 
SQ functions are similar in shape, and are in most cases 
bandpass to some degree. The MF data on the other 
hand falls off rapidly with increasing spatial frequency of 
orientation modulation. 

Linear Systems Analysis 
Method 

We have analysed our results according to three 
classes of linear model. For each model we used each 
subject's SN sensitivities to predict their individual SQ 
and MF data, and these predictions were made without 
any free parameters. We first fitted the SN data with a 
function which could be used to generate the different 
model predictions. For this we used a quadratic fit to the 
log transformed sensitivities when plotted as a function 
of log spatial frequency. The fitted function served two 
purposes: first to smooth the SN data for each subject 
and second to allow predictions for SN sensitivities at 
spatial frequencies other than those measured directly, 
which was necessary for one of the linear models tested 
(see below). The quadratic function generated pre- 
dictions for SN sensitivities in the range of spatial 
frequencies from 1 to 64 times that of the lowest spatial 
frequency tested, which was the 0.033 c/deg condition. 
We found that a Gaussian fit to the SN data produced 
virtually identical estimates of sensitivity for those 
spatial frequencies not directly tested, so we concluded 
that our predictions were not dependent on the precise 
form of the function used to fit the SN data. 

The predictions of the three classes of linear model 
were all derived by Fourier analysis using the Fast 
Fourier Transform (FFT) and inverse FFT routines in 
the graphics/analysis package IGOR (Wavemetrics Inc.) 
run on a Macintosh computer. FFTs were performed on 
each type of idealized waveform and for each spatial 
frequency, with the exact number of cycles of modu- 
lation that were present in the stimulus, using a resol- 
ution of 128 data points in every case. The three linear 
models were as follows. 

(1) Single-channel peak-amplitude model. This model 
supposes that the peak response of a single linear 
operator underlies the detection of the orientation 
modulation in our stimuli. The predictions for this 
model were made by multiplying the Fourier transforms 
of the SQ and MF stimuli by the fitted SN sensitivities, 
taking the inverse Fourier transform of the result, and 
then measuring its peak amplitude. This is mathematic- 
ally identical to taking a single linear operator whose 
spatial frequency tuning is given by the SN sensitivity 
function, convolving the operator with the SQ and MF 
stimuli, and measuring in each case the peak in the oper- 
ator's convolution response (Bracewell, 1986, p. 110). 

(2) Single-channel r.m.s, model. This model supposes 
that it is the r.m.s, of a single linear operator that 
underlies detection. The predictions for this model were 
made in the same way as with the single-channel peak- 
amplitude model described above, except that the r.m.s. 
of the inverse Fourier transform rather than its peak 
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amplitude was measured. The sequence was also per- 
formed on the SN sensitivities themselves, in order 
to provide SN r.m.s, values which could be used to 
normalize the predicted SQ and MF values. 

(3) Most detectable harmonie model. This model sup- 
poses that the amplitude of the test stimulus (SQ and 
MF) required for detection is that required to make its 
most detectable harmonic reach its own independent 
detection threshold. To test this model we used the fitted 
SN sensitivities as the estimates of the detectability of the 
individual harmonic components in the SQ and MF 
stimuli. For all the subjects the most detectable har- 
monic in both the SQ and MF stimuli turned out to be 
the lowest harmonic in the stimulus. In the SQ stimulus 
this is the fundamental harmonic (lf) with an amplitude 
of  4/rr, or 1.273, times that of the SQ stimulus itself. 
The predictions for the SQ data were thus calculated 
by multiplying the fitted SN sensitivities at each spatial 
frequency by 1.273. For the MF stimulus, the lowest 
harmonic is the 3rd harmonic (3f), whose amplitude is 
4/(3g), or 0.4244, times that of the MF stimulus itself. 
For the two highest spatial frequencies of the MF 
stimulus tested, 0.267 and 0.533 c/deg, the 3rd harmonics 
are at 0.8 and 1.6 c/deg respectively, and thus lie outside 
of the range of SN spatial frequencies actually tested 
(0.033 0.533c/deg). Sensitivity to these higher-than- 
measured harmonics was estimated in the same way as 
for all the other harmonics, namely from the quadratic 
fit to the SN data. The predictions for the MF data were 
made by taking the estimates of SN sensitivity at 
spatial frequencies 3 times that of the MF stimulus and 
multiplying the result by 0.4244. 

Results 

The model predictions for all of  the subjects are 
given in Fig. 4. For the single-channel peak-amplitude 
and most detectable harmonic models, the dotted lines 
through the SN data are the quadratic fits. In the case 
of the most detectable harmonic model the dotted line 
extends beyond the data to those spatial frequencies 
for which an estimate of sensitivity was required in order 
to predict the MF data (see above). For  the single 
channel r.m.s, model, the dotted lines through the 
SN data represents the normalized r.m.s, values, and 
as expected are virtually identical to the quadratic fits. 
The model predictions for the SQ and MF data, which 
are of principal interest, are shown as solid lines. 
All three models correctly predict the overall ordering 
of sensitivity (SQ > SN > MF), as well as the overall 
shape of the functions. Note in particular how the 
very differently shaped SN functions in DK's  and LM's 
data, representing respectively the two extremes in the 
range from lowpass to markedly bandpass, is each 
able to predict much of  the individual subject's SQ and 
MF data. Before providing a more quantitative com- 
parison of the three classes of linear model however, 
it is necessary to consider the possible reasons for one 
noticeable failure of all three models: to predict the 
performance at the two highest spatial frequencies of 
the MF stimulus. 

Effects of Undersampling and Orientation Noise 

Performance at the two highest spatial frequencies of  
the MF stimulus is consistently superior to the predic- 
tions of any of  the linear models. The fact that perform- 
ance is higher than expected strongly suggests that lower 
harmonic components (in the orientation domain) were 
introduced into the neural image through aliasing, as a 
result of  the manner in which the stimuli were physically 
constructed and because of additional limitations im- 
posed by visual processing. There are two likely causes 
of aliased frequencies in our stimuli: undersampling and 
the effects of noise in the representation of local orien- 
tation. Undersampling could arise from a combination 
of three factors. First, because the stimuli were generated 
by discretely sampling the waveform by a finite (1000) 
number of Gabor  patches; second, because the positions 
of those Gabor  patches were completely random in the 
stimulus; third, because the visual system may only have 
effectively sampled the orientation information from a 
proportion of the Gabor  patches present. Orientation 
noise was introduced into the stimuli at generation (the 
orientation of each Gabor  patch was drawn randomly 
from a Gaussian distribution with a mean defined by the 
point on the waveform and a SD of 10deg), and the 
visual system would undoubtedly add further noise 

• during the process of transduction. 
To examine the likely effects of both undersampling 

and orientation noise we carried out the following 
simulations. First, we produced a one-dimensional rep- 
resentation of  each waveform in an 8192 point array, 
and then sampled the waveform with S points, whose 
positions within the array were randomized. S was a 
maximum of 1000 (the number of Gabor  patches in each 
stimulus). The random positioning of  S points in a much 
larger array captured both the discrete nature of the 
sampling and the randomization of the sample pos- 
itions. We then added noise to each sampled point in the 
model waveform by an amount drawn randomly from a 
Gaussian distribution with a SD given by c~,,/T, a,, was 
the SD of the added orientation noise, scaled by 1/T 
to enable the calculations to be performed on wave- 
forms with unit, rather than threshold, amplitude. The 
sampled waveform with added orientation noise was 
then subject to the same linear modeling as described in 
the previous section, with the difference that each pre- 
dicted point was the mean of 10 simulations, each carried 
out with a freshly generated set of S random sample 
points. Figure 5(a) shows the effect of S (sample size), on 
the predictions of the single channel r.m.s, model for 
subject LM. The data in Fig. 5(a) has been normalized 
to the completely sampled, noise free, sine-wave con- 
dition. Figure 5(b) shows the effect of adding different 
levels of a, (orientation noise) to the S = 1000 sampled 
condition. Figure 5(a, b) demonstrates how in principle 
either a significant amount of  undersampling, or a 
significant amount of orientation noise, can predict 
the relative increase in the performance of the MF high 
spatial frequency data, and that these two factors 
have little effect on the other stimulus conditions. 
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FIGURE 5. Effects of (a) undersampling, (b) added orientation noise and (c) both, on subject LM's results using the 
single-channel r.m.s, model. In (a) the three conditions are: unsampled, 1000 sample points and 250 sample points. The curves 
have all been normalized to the unsampled SN condition and the actual subject's data points [shown in Fig. 5(c)] have been 
omitted to minimize cluttering. The effect of reducing the number of samples is to selectively elevate sensitivity to the high 
spatial frequency MF stimuli. In (b) the consequence of adding orientation noise, a0, to the 1000 sample condition shows a 
similar pattern. (c) The prediction of LM's results using the single-channel r.m.s, model for a simulation involving 500 sample 

points and a value of a, of 20 deg. For further details see text. 

F ina l ly  Fig. 5(c) shows a single p red ic t ion  to demon-  
s t ra te  the most  l ikely scenar io  that  both unde r sampl ing  
and  o r i en ta t ion  noise con t r ibu te  to the improved  per-  
fo rmance  in the high spat ia l  f requency M F  data .  
Here  we have a rb i t ra r i ly  set S to 500 (ha l f  the ac tua l  
sample  size) and  tr,, to 20 (twice the level o f  in t roduced  
o r i en ta t ion  noise). 

A l t h o u g h  these model  pred ic t ions  s t rongly  argue for 
a l ias ing as the cause o f  the high spat ia l  f requency M F  
per fo rmance ,  there  may  o f  course be o ther  con t r i bu to ry  
factors  such as a d i s tor t ion  o f  the shape o f  the wave- 
form result ing f rom non- l inea r  g roup ing  processes  (see 
Discussion) .  Given  such a possibi l i ty ,  and  given our  
desire to app ly  the l inear models  to the da t a  wi thout  
any  free pa ramete rs ,  we have taken the conservat ive  
a p p r o a c h  o f  s imply removing  the two high spat ia l  fre- 
quency M F  da ta  poin ts  for the quant i t a t ive  compar i son  
o f  the three l inear  models  now descr ibed.  

Quantitative Comparison o[" the Three Linear Models 
An overal l  p ic ture  o f  the relat ive predict ive power  o f  

the three classes o f  l inear  model  is given in Table  1. 
Table  1 shows 12 values for the three mode l  pred ic t ions  
when g 2 was calcuhtted thus: 

,Z~_ =-I ~ [(ti_ p,)/ai] 2 (2) 
n, .~ 

where t, is the measured  threshold  o f  o r i en ta t ion  m o d u -  
la t ion for  the i th  spat ia l  frequency,  c 5 the i th  SE o f  the 
threshold  es t imated  from the psychomet r i c  funct ion,  pi 

TABLE I. 7,2 values for model predictions 

Single-channel Single-channel 
peak-amplitude r.m.s. 

SQ MF SQ MF 

Most detectable 
harmonic 

SQ MF 

FK 9.2 14.3 7.9 1.6 6.2 15.7 
MV 691.0 21.3 8.2 26.9 52.0 236.8 
SA 25403 2.4 2451 3.4 227 21.2 
AW 14.1 22.9 5.5 4.3 5.6 I8.1 
LM 6.3 6.8 1.6 9.0 4.6 78.5 
DK 11.9 14.2 2.1 0.83 2.4 8.0 

For the M F predictions only data for the three lowest spatial fiequencies 
(0.033 0.133 c/deg) are included. 

the i th model  pred ic t ion  and n the number  o f  da t a  points  
per  model  fit, which was 5 for  the SQ cond i t ion  and 
3 for the M F  condi t ion  (the 0.267 and 0.533 c/deg M F  
condi t ions  were left out  for  reasons  given in the previous  
section). The  smal ler  the value o f  Z 2, the bet ter  the fit to 
the da ta ,  though  it should  be noted  that  the values are 
general ly  qui te  high owing to the very tiny values o f  tr 
(see the er ror  bars  on Fig. 3). A good  measure  o f  the 
relat ive fits o f  the three models  is the ra t io  o f  Z 2 values 
c o m p u t e d  for each subject  for a given pa i r  o f  the l inear 
models .  I f  we take the (geometric)  mean ra t io  o f  Z 2 
across  subjects  and across  the two s t imulus  condi t ions  
(SQ and  M F ) ,  we find that  the single- channel  r.m.s. 
model  p roduces  one-quar te r  the value c o m p a r e d  to 
the s ingle-channel  p e a k - a m p l i t u d e  model ,  and  jus t  over  
one- th i rd  the value c o m p a r e d  to the most  de tec table  
ha rmon ic  model .  

FIGURE 4 (opposite). Predictions for the three linear models. The dashed line through the SN data is the best fitting quadratic 
for the single-channel peak-amplitude and the most detectable harmonic models, and the normalized r.m.s, values for the 
single-channel r.m.s, model. In the case of the most detectable harmonic model, the dashed line continues beyond the subjects" 
data to include those spatial frequencies for which an estimate of SN sensitivity was required in order to predict the two highest 
spatial frequency MF data points. Continuous lines through the SQ and MF data are the individual model predictions generated 

from each subject's SN data. 
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FIGURE 6. Ratio of (a) SN-to-SQ sensitivity, (b) SN-to-MF sensitivity, averaged across all subjects. In (b) only the three 
lowest spatial frequencies are compared. The lines through the data are the three model predictions averaged across subjects. 

A different method of comparing the relative pre- 
dictive power of the three linear models is illustrated 
in Fig. 6. Figure 6(a) shows the average SN-to-SQ 
sensitivity ratio and Fig. 6(b) the average SN-to-MF 
sensitivity ratio across all six subjects. Each graph also 
shows the predictions from the three models, again 
averaged across all six subjects. In Fig. 6(a), the closeness 
of the predictions of the single-channel r.m.s, and most 
detectable harmonic models is apparent. Figure 6(b) 
demonstrates that, at least for the first three data points 
included in the quantitative comparisons, the single- 
channel r.m.s, model gives the best fit, albeit only 
marginally. In conclusion the quantitative comparison 
of the three classes of linear model suggests that the 
single-channel model gives the best fit to both the SQ 
and MF data alike. 

DISCUSSION 

In this study we have shown that the detection of 
orientation modulation can be adequately modelled by 
a single linear mechanism. We found that the measured 
sensitivities for detecting the orientation modulation in 
SN modulated textures were able to predict to a surpris- 
ing degree of accuracy sensitivity to both SQ and MF 
modulated textures in all the subjects tested. The linear 
model which gave the best fit to both the SQ and MF 
data consisted of  a single linear channel whose r.m.s. 
response determined detection. Two other linear models 
performed slightly less well: a single linear mechanism 
whose peak amplitude response determined perform- 
ance, and one in which performance was determined 
by sensitivity to the most detectable harmonic in the 
stimulus. 

The r.m.s, of the physical waveform 

Given how well the single-channel r.m.s, model per- 
forms, it might be supposed that a model based simply 
on the r.m.s, of  the physical waveform itself, rather than 
that of  the output of a putative mechanism in response 
to that waveform, might also give a good account of the 

data. The r.m.s.'s of unit amplitude SQ, SN and MF 
waveforms are 1.414, 1 and 0.414 respectively when 
normalized to the SN waveform, and this clearly predicts 
the overall ordering of sensitivity we observed in our 
data (with the notable exception of subject LM's low 
spatial frequency results). However, a model based 
simply on the physical r.m.s, of the stimuli, or indeed the 
mean absolute deviation, would predict flat orientation 
modulation functions for all stimuli. A modified version 
of a physically-based r.m.s, model incorporating the 
attenuation characteristics described by the SN data 
would give non-flat functions, but they would neverthe- 
less be parallel, unlike what was found. A physically- 
based r.m.s, model is thus untenable. 

Single- vs multiple-channel models 

Linear systems analysis has been remarkably 
successful in modelling threshold luminance vision. It 
was the comparison of the detectability of SN, SQ and 
MF stimuli in the luminance domain that led Fergus 
Campbell and his colleagues to conclude that multiple 
independent channels underlie the detection of lumin- 
ance patterns (Campbell & Robson, 1968; Campbell 
et al., 1971, 1978). They found that multi-harmonic 
luminance patterns were detected once their most detect- 
able harmonic component reached its own independent 
threshold. This is formally identical to the most detect- 
able harmonic model tested here, which we found to 
give a good fit to the data but not as good as that 
provided by the single-channel r.m.s, model. Although 
our results offer the possibility that the detection of 
orientation modulation, unlike luminance detection, is 
mediated by a single- rather than multiple-channel 
mechanism, at least at a given spatial scale of luminance, 
one must be cautious for two reasons. First, the single- 
channel r.m.s, model predictions are only marginally 
superior to those of the most detectable harmonic model. 
Second, we cannot rule out the possibility that there 
may have been some probability summation between the 
lowest and most detectable, and the higher, harmonics 
in the SQ and MF stimuli, even though the higher 
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harmonics were of significantly lower amplitude. Our 
single-channel r.m.s, model could thus constitute an 
emergent property of multiple-channel texture mechan- 
isms. Further experiments will be needed to categorically 
distinguish between single- and multiple-channel 
accounts of our data. One such experiment would be to 
test whether textures consisting of one or other of two 
equally detectable harmonic components, widely separ- 
ated in spatial frequency~ are discriminable at threshold. 
The single-channel r.m.s, model predicts that they 
should not be discriminable, whereas a multiple-channel 
model predicts that they should be discriminable. 

Nature of  first-stage input 

Our model operator constitutes a description of the 
putative "second-stage" of orientation gradient detec- 
tion, which could in principle integrate the outputs of an 
array of "first-stage" filters, such as simple or complex 
cells, which process the luminance detail of the micro- 
patterns in each stimulus. What do our results tell us 
about the nature of this first-stage input? First, one must 
be clear about what our results do not tell us. They 
do not tell us anything about the kind of point non- 
linearities which might be imposed prior to, at the stage 
of,. or immediately after the processing of the luminance 
detail in our stimuli by the first-stage filters. This issue 
has been addressed in a number of studies on texture 
segregation and many models now include point non- 
linearities such as half-wave rectification, full-wave rec- 
tification and contrast compression imposed on the early 
filter outputs (Graham et al., 1992; Malik & Perona, 
1990; Rubenstein & Sagi, 1990; Gorea & Papathomas, 
1993). Can we nevertheless say anything at all about 
the nature of its input? The good data fits provided by 
the linear models are consistent with the input being a 
more-or-less veridical (though quite possibly noisier than 
in the stimulus itself) map of local orientations. This 
might appear at odds with the significant body of 
research supporting the existence of facilitatory and 
inhibitory interactions between neighbouring oriented 
filters. These non-linear interactions are believed to 
emphasize local features which lie along straight lines 
and smooth curves, that is features which display "good 
continuity" (Zucker & Davis, 1988; Link & Zucker, 
1988; Field, Hayes & Hess, 1993). Such interactions 
exploit the fact that good continuity is a common feature 
of contours and textures in natural scenes (Parent & 
Zucker, 1989: Field et al., 1993). There is psychophysical 
evidence for the involvement of curvilinear gouping 
processes in orientation-defined textures (Zucker, 1983, 
1985: Link & Zucker, 1988, Or & Zucker, 1989) and 
recently a number of neural network models have been 
developed to implement their operation (Lowe, 1988; 
Parent & Zucker, 1989; Sha'ashua & Ullman, 1988; 
Gigus & Malik, 1991). That these processes may be 
implicated in the detection of the orientation modulation 
in our displays can be seen by the strong subjective flow 
patterns observed in the stimuli shown in Fig. 2. Zucker 
(1985) has defined a flow pattern as "a dense covering of 
a surface with a family of curves that are locally parallel 

almost everywhere". In our previous paper (Kingdom 
et al., 1995) we provided some evidence which was 
consistent with such non-linear grouping processes. We 
found a non-linear relationship between the squared 
detection thresholds for SN orientation modulation and 
the amount of added orientation noise variance. We 
argued that this was inconsistent with a linear statistical 
decision model. Instead, increasing the amount of orien- 
tation noise would increasingly disrupt the possibility 
of linking between neighbouring micropattern detectors 
with similar orientation preferences and would degrade 
performance over and above that which would be 
expected solely on statistical grounds. We must conclude 
therefore that while non-linear grouping processes are 
undoubtedly involved in the processing of our stimuli, 
they probably act primarily to sharpen the signal rather 
than distort its shape. 

Receptive field organization of  second-stage 

The account of our data in terms of a putative linear 
operator has at first sight much in common with a 
number of recent models which emphasize the extraction 
of local texture gradients as the basis for image segmen- 
tation (e.g. Malik & Perona, 1990; Rubenstein & Sagi, 
1990; Landy & Bergen, 1991; Nothdurft, 1991). Our SN 
orientation modulation functions are in most cases 
bandpass to some degree, as we found in our previous 
study (Kingdom et al., 1995), consistent with the oper- 
ation of orientation gradient detectors. The important 
point about our SN data however, is that it shows 
maximal sensitivity to relatively low spatial frequencies 
of orientation modulation. Peak sensitivity occurred at 
an average spatial frequency of orientation modulation 
of 0.093 c/deg, which is consistent with our previous 
study, where the figure was 0.09 c/deg. This figure was 
calculated by taking the geometric average of the peak 
spatial tYequencies estimated from the quadratic fits to 
the SN data. A figure of about 0.09 c/deg implies that 
peak sensitivity to orientation modulation occurs for 
textures modulated at a spatial frequency more than 50 
times lower than the dominant luminance spatial fre- 
quency of the micropatterns, which was 4.8 c/deg. The 
receptive field profile of the linear operator which can 
predict performance with our stimuli can be obtained 
from the inverse Fourier transform of the SN data. The 
results are shown in Fig. 7 for the real part of the inverse 
Fourier transform, which generates an even-symmetric 
filter profile. In general the receptive fields have narrow 
centres with broad but shallow inhibitory surrounds. 
Each plot in Fig. 7 gives W~, the width of each receptive 
field centre (defined as the distance between the two 
zero-crossings on either side of the centre). In a recent 
survey by Gurnsey and Laundry (1992) of the Malik and 
Perona (1990) and Rubenstein and Sagi (1990) texture- 
segregation models, which were inspired by human 
psychophysical data, Gurnsey and Laundry concluded 
that they employed second-stage filters whose receptive 
fields covered an area of about 3 x 3, or 9 in total, 
micropatterns. In our stimuli mean micropattern density 
was 4.8 micropatterns/deg 2, so a 3 deg diameter square 
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F I G U R E  7. Each plot shows one half of  the even-symmetric receptive 
field profile of  the putative operator underlying performance. Each 
plot is derived from the real part of  the inverse Fourier transform of 
each individual subject's data. W c gives the estimated width of  the 
centre of  the receptive field, defined as the distance between the two 

zero-crossings on either side of  the centre. 

receptive field centre (the mean value of Wc from Fig. 7) 
would alone cover about 6.6 x 6.6, or 43 in total, 
micropatterns. It is not realistic to give a figure for the 
number of micropatterns covered by the receptive field 
surround because it is so shallow, but it is clearly an 
order of magnitude greater than the centre. More 
recently Rubenstein and Sagi (1993) have measured the 
detectability of square-wave texture modulations (their 
square-waves had a fixed peak-to-trough amplitude of 
90 deg, and performance was limited by a post-stimulus 
mask presented at a variable inter-stimulus-interval) and 
on the basis of the results proposed second-stage filters 
whose centres spanned about seven micropatterns, and 
whose surrounds extended 2-3 times that of the centres. 
This is remarkably similar in size to our model second- 
stage operators. An arguably better way of making the 
comparison is in terms of the number of cycles of the 
Gabor micropattern carrier across the receptive field 
centre, rather than number of micropatterns, for reasons 
given below. Our micropatterns were 4.8 c/deg, and thus 
a 3 deg wide receptive field centre would cover about 14 
carrier cycles. Rubenstein and Sagi proposed a 7 deg 

wide receptive field centre, which for their 2 c/deg micro- 
patterns used in their orientation gradient task also 
implies 14 carrier cycles. There are many differences 
between the stimuli and tasks used in our study and 
those others we have cited, and these could account for 
many of the differences in the proposed size of the 
texture operators. One must conclude however that for 
the detection of orientation gradients, our data, together 
with the recent study of Rubenstein and Sagi (1993), 
argue for second-stage filters with larger receptive fields 
than has previously been supposed. This conclusion is 
also in keeping with the more "region-based", rather 
than "edge-based" approach to texture segregation 
suggested by Gurnsey and Laundry (1992), who found 
that blurring or occluding the sharp borders in textures 
did not substantially impair segregation performance. 
A caveat to this argument however is that the large 
receptive field operators that we are suggesting may be 
too coarse for locating texture boundaries, and since 
texture boundaries can presumably be located with 
reasonable accuracy, it may be that different mechanisms 
subserve their localisation as opposed to their detection. 

What might be the physiological basis of our second- 
stage operator? Earlier we made the reservation that the 
single-channel r.m.s, model might represent an emergent 
property of multiple-channel texture mechanisms. 
Whether single- or multiple-channel however, our puta- 
tive operator nominally integrates all the orientation 
information that lies within its receptive field, and gives a 
signal dependent on both the magnitude and the spatial 
frequency of the orientation modulation it samples. It 
is therefore tuned to orientation differences rather than 
to orientation per se. One way in which this could be 
implemented physiologically would be to have a centre 
mechanism which summed the activity of first-stage 
filters tuned to one orientation, and a surround mechan- 
ism which summed the activity of first-stage filters tuned 
to the orthogonal orientation, as in the recent model of 
Rubenstein and Sagi (1993). Some supportive neuro- 
physiological evidence for such a receptive field organiz- 
ation comes from single unit recordings in monkey VI 
(Knierim & Van Essen, 1992), and MT (Olavarria, 
De Yoe, Knierim, Fox & Van Essen, 1992). 

Although we have demonstrated that a single-channel 
model provides a good description of the second-stage of 
orientation-defined texture processing, it is very likely 
that different sized second-stage filters exist for process- 
ing different spatial scales of their first-stage inputs. 
Kingdom et al. (1995) found that the SN orientation 
modulation function was scale invariant, i.e. it did not 
shift significantly in its position on the spatial frequency 
axis with a change in viewing distance, if spatial 
frequency was measured in stimulus rather than retinal 
units (e.g. c/cm rather than c/deg). We argued, following 
Bergen (1991), that this could result from orientation 
gradient operators being tied to micropattern size or 
spatial frequency, a feature incidentally incorporated 
in some models of texture processing (e.g. Voorhees & 
Poggio, 1988, Sagi, 1990). Whether there are indeed 
different orientation gradient operators for processing 



ORIENTATION-DEFINED TEXTURE GRADIENT DETECTION 419 

different spatial scales of luminance contrast is, however, 
a matter requiring more direct empirical verification 
than the demonstration of scale invariance. 

Abrupt vs smooth texture gradients 

Finally, we return to the question we first posed in the 
Introduction. Are the mechanisms for detecting abrupt 
texture gradients the same as those for detecting 
smoothly varying texture gradients? We have shown that 
the detectability of stimuli with smooth spatial vari- 
ations in orientation (the SN stimuli) can predict the 
detectability of stimuli with abrupt (the SQ stimulus), 
and with both abrupt and smooth (the MF stimulus), 
spatial variations in orientation. We conclude therefore 
that abrupt and smooth spatial variations in orientation- 
defined textures are detected by a common mechanism 
which mimics the operation of a single linear operator. 
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