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We sought to determine whether the detection and the identification of texture modulations are mediated by a
common mechanism. On each trial two textures were presented, one of which contained a modulation in ori-
entation (OM), spatial frequency (FM), or contrast (CM). Observers were required to indicate whether the
modulated texture was presented in the first or the second interval as well as the nature of the texture modu-
lation. The results showed that for two of the three pairwise matchings (OM–FM and OM–CM) detection and
identification performance were nearly identical, suggesting a common underlying mechanism. However,
when FM and CM textures were paired, discrimination thresholds were significantly higher than detection
thresholds. In the context of the filter–rectify–filter model of texture perception, our results suggest that the
mechanisms underlying detection are labeled with respect to their first-order input; i.e., the identities of these
mechanisms are available to higher levels of processing. Several possible explanations for the misidentifica-
tion of FM and CM at detection threshold are considered. © 2003 Optical Society of America

OCIS codes: 330.1880, 330.4060, 330.5000, 330.5510, 330.6100, 330.7310.
1. INTRODUCTION
Modulations of orientation, spatial frequency, or contrast
in the visual image provide the observer with important
clues regarding the spatial layout of the visual scene.
Such modulations are often termed second-order modula-
tions, as they are not defined by luminance variations and
hence cannot be detected by first-order (luminance) filters
only. Instead, human processing of second-order varia-
tions in the visual image has often been modeled by
second-order mechanisms (see Refs. 1 and 2 for recent re-
views). Although the specific instantiation of the model
differs somewhat among researchers, the basic idea be-
hind these models is identical. The model is depicted
schematically in Fig. 1. The stimulus is a texture that
contains a square-wave spatial-frequency modulation.
The mechanism first filters the texture by using
orientation- and spatial-frequency-selective filters (such
as simple cells). The output from this first stage is then
subjected to a nonlinearity (here, full-wave rectification)
and consequently integrated by a larger second-stage fil-
ter. Any difference in spectral content between the exci-
tatory and the inhibitory regions of the second-stage filter
will lead to the activation of appropriate second-stage fil-
ters. We shall refer to these mechanisms as filter–
rectify–filter (FRF) mechanisms.

Activation of an FRF mechanism may arise from a dif-
ference between texture regions in orientation, spatial
frequency, or contrast. Hence any individual FRF
mechanism will be indiscriminate as to the nature of the
texture discontinuity that triggered its response. This
inherent flexibility of the FRF mechanism has made it
possible to relate it to the perception of texture modula-
tions in contrast,3,4 orientation,5–11 spatial frequency,11,12

and even pattern arrangement.11,13 On the other hand,
it follows that if the same FRF mechanism underlies the
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detection of different types of texture modulation, we
would expect observers to have difficulty identifying the
type of modulation at its detection threshold. This repre-
sents one of the possible outcomes of the experiments re-
ported in the present study, whose aim is to establish
whether different types of texture modulation can be
identified at their individual detection thresholds. How-
ever, we show below how a consideration of the likely pat-
tern of activity across the range of FRF mechanisms acti-
vated by different types of texture modulation leads to an
alternative possibility, namely, that different texture-
modulation types will maximally activate different FRF
mechanisms and that therefore the type of texture modu-
lation might be identifiable at detection threshold.

At the core of the argument is the observation that the
distribution of active FRF mechanisms across the orien-
tation and spatial-frequency preferences of their first-
order filters will be different for different types of texture
modulation, even at very low depths of modulation. This
is so because FRF mechanisms, by their very nature, re-
spond to the difference in spectral content between differ-
ent texture regions. In the case of low-depth-of-
modulation orientation modulation (OM) and frequency
modulation (FM) textures, this difference in spectral con-
tent may have peaks that are nowhere near the center
orientation and spatial frequency of the texture.14 This
is illustrated in Fig. 2. In Fig. 2a we plot, in Fourier
space, the spectral amplitude distribution of an unmodu-
lated texture at the dc spatial frequency of 5 cycles per de-
gree (cpd) and the dc orientation of 0° (horizontal).15 The
texture has a spatial-frequency bandwidth (full-width at
half-height) of 1.5 octaves and an orientation bandwidth
of 60° (these values correspond to those of the textures
used in this study). Figure 2b plots the difference in
spectral amplitude between the two texture regions of a
2003 Optical Society of America
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Fig. 1. FRF mechanism. A schematic FRF mechanism is shown atop a frequency-modulated texture. The amplitude of modulation is
0.2 octave. The excitatory center of the FRF shown covers a texture region in which the center spatial frequency is 0.2 octave below the
texture’s dc spatial frequency (5 cpd) and the inhibitory surrounds cover texture regions in which the center spatial frequency is 0.2
octave above the dc spatial frequency. The texture is first filtered with simple first-order luminance filters selective for orientation and
spatial frequency. One example Gabor-shaped filter, maximally tuned to a spatial frequency of 3.5 cpd, is shown on the right. The
rectified output from the first-stage filter is consequently integrated by the larger second-stage filter. The center region leads to acti-
vation of the FRF mechanism (1), whereas the surround leads to inhibition of the FRF mechanism (2). Shown within the receptive
fields of the second-stage filter is the full-wave-rectified output from the first-stage (luminance) filter, on the far right of the figure.
square-wave-modulated OM texture: one texture region
is centered at 4° counterclockwise from horizontal (u1);
the other is centered at 4° clockwise from horizontal (u2).
From this figure it is clear that the difference in spectral
content peaks at orientations around 30° either side from
horizontal. We14 recently measured threshold OM
depths at which the spatial frequency of the OM could be
discriminated. In the critical conditions, observers were
adapted to a simple luminance grating at varying orien-
tations. Thresholds peaked when observers were
adapted to a simple luminance grating oriented at 30° (or
230°) from horizontal. This result indicates that the un-
derlying mechanism indeed acts upon the difference in
spectral content between different texture regions.
Hence two distinct groups of mechanisms will be active in
response to an OM. Both groups will have a first-order
spatial-frequency preference that lies at the center spatial
frequency contained in the texture, but the two groups
will differ in their first-order preference for orientation.
Note that the responses of the two groups of FRF mecha-
nisms will be in counterphase. Mechanisms tuned to ori-
entations at 30° clockwise from horizontal will be maxi-
mally activated when their excitatory centers cover the
texture region where orientations peak in the clockwise
direction. Mechanisms tuned to orientations at 30° coun-
terclockwise, on the other hand, will be maximally acti-
vated when their excitatory centers cover the texture re-
gion where orientations peak in the counterclockwise
direction.

A similar argument applies to FM textures. In Fig. 2c
we plot the difference in spectral content between the two
texture regions of a square-wave-modulated FM texture:
One texture region is centered at a spatial frequency that
lies 0.1 octave below the dc spatial frequency ( f1); the
other texture region is centered at a spatial frequency
that lies 0.1 octave above the dc spatial frequency ( f2).
The peaks in the difference distribution lie at spatial fre-
quencies quite far removed from the dc spatial frequency,
and again there will be two distinct groups of active
mechanisms that, in the case of an FM texture, differ
with respect to their first-order spatial-frequency prefer-
ences but are both centered at the dc orientation of the
texture. We14 confirmed that threshold elevation in a
modulation spatial-frequency-discrimination task using
FM textures peaked when observers were adapted to a
simple luminance grating with a spatial frequency ap-
proximately 1 octave below the dc spatial frequency of the
texture. There was only a slight indication that lumi-
nance filters tuned to spatial frequencies above the dc
spatial frequency of the texture were involved. This is in
all likelihood due to a lower contrast sensitivity at these
higher frequencies. The two groups of active FRF
mechanisms will again respond in counterphase to the
texture modulation in a fashion similar to that in the case
of OMs.

In the case of a contrast modulation (CM) texture, the
distribution of the spectral difference between two texture
regions differing in contrast will be identical (except for a
scaling factor) to the spectral distribution of a texture
centered at the dc orientation and spatial frequency. In
other words, the difference distribution will simply be a
scaled version of that in Fig. 2a.
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As outlined above and illustrated in Fig. 2, each of the
three types of texture modulation used in the present re-
search (OM, FM, and CM) will lead to a unique pattern of
activation of mechanisms that differ in the preferences of

Fig. 2. a, Idealized amplitude spectrum of an unmodulated tex-
ture at dc spatial frequency (5 cpd) and dc orientation (horizon-
tal). Besides a scaling factor, this corresponds also to the differ-
ence between the amplitude spectra of the two regions of a CM
texture. b, Absolute difference between the idealized amplitude
spectra of the two texture regions of an OM texture at an ampli-
tude of modulation of 4°. c, Absolute difference between the ide-
alized amplitude spectra of the two texture regions of an FM tex-
ture at an amplitude of modulation of 0.1 octave. FRF
mechanisms tuned to orientations/spatial frequencies at the
peaks in the spectral-difference distribution will be maximally
responsive to the texture modulation.
their first-order (luminance) filters. A discontinuity in
orientation between two texture regions will lead to two
groups of active FRFs, both of which will be centered at
the stimulus spatial frequency but at two distinct orien-
tations. Conversely, a spatial-frequency discontinuity
will again lead to two groups of active FRFs; however, in
this case both will be centered at the peak orientation of
the stimulus, but each group will have different prefer-
ences for spatial frequency. A discontinuity in contrast
will lead to the activation of only one group of FRFs, cen-
tered at the peak orientation and spatial frequency of the
texture.

It follows that, in theory, the distribution of active FRF
mechanisms across the orientation and spatial-frequency
preferences of their first-order filters may be used to dis-
ambiguate different types of texture modulation. This
strategy would require that mechanisms be labeled16 with
regard to the identity of their first-order filters. Recently,
Prins and Mussap10,17 showed that FRF mechanisms are
labeled with respect to the location of their receptive
fields in the visual field such that second-order modula-
tions can be accurately localized. If FRF mechanisms
are, indeed, labeled with respect to the tuning preferences
of their front-end filters also, the nature of the texture
modulation may be resolved by determining the distribu-
tion of active mechanisms across their first-order orienta-
tion and spatial-frequency preferences.

If the mechanisms involved are indeed labeled with re-
spect to their front-end input and the distribution of ac-
tive texture mechanisms is used to determine the nature
of the texture modulation, it follows that the detection
and the identification of texture modulations are sub-
served by the same mechanisms. Our present goal is to
test this idea. Our strategy is similar to that employed
by Watson and Robson.16 Observers are presented with
texture modulations and are asked to perform both a de-
tection task (‘‘Which of two intervals contained a modu-
lated texture?’’) and a discrimination task (‘‘What type of
texture modulation was presented?’’). If detection and
identification are indeed subserved by the same mecha-
nisms, detection and identification performance should be
described by identical psychometric functions.

To pre-empt, we find that the three different types of
textures can be identified as well as they can be detected
when OM textures are paired with FM textures or with
CM textures. These results are compatible with the no-
tion that the identification of texture modulations in
these cases is subserved by the same mechanisms that
underlie their detection. We have argued above that this
is possible because the mechanisms that detect different
types of modulation are different for each of the types of
modulation, and hence the identification of active mecha-
nisms reveals the type of modulation. However, when
CM textures are paired with FM textures, identification
performance is significantly worse than detection perfor-
mance. We discuss several possible reasons why CM and
FM textures might be confused at detection threshold.

2. STIMULI
Textures consisted of randomly positioned Gabor micro-
patterns,
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L~x, y ! 5 L0 1 Lm cos$2pf @x sin~u! 1 y cos~u!# 1 f%

3 exp@2~x2 1 y2!/~2se
2!#, (1a)

where

se 5 ~ fp!21@0.5 ln~2 !#1/2~21.5 1 1 !~21.5 2 1 !21,
(1b)

L0 is mean luminance (124.0 cd m22), Lm is the lumi-
nance modulation amplitude (61.9 cd m22), f is spatial fre-
quency, u is orientation, f is the phase of the cosine com-
ponent (f 5 p/2 or 3p/2), and se is the standard
deviation of the Gaussian envelope. The value of se co-
varied with the value of f so as to keep the spatial-
frequency bandwidth (full-width at half-height) of the mi-
cropatterns constant at 1.5 octaves across different
frequencies.

The stimulus area was circular with a radius of 4.1°.
The positioning of the Gabor micropatterns within the
stimulus area was random under the constraint that the
minimum center-to-center separation between any two
micropatterns be equal to the standard deviation of the
micropattern envelope @ se in formula (1)]. This con-
straint ensured approximately equal coverage across the
stimulus area and avoided excessive luminance summa-
tion (which would otherwise occur where several micro-
patterns happened to overlap). The luminance modula-
tions, but not the dc components, of the Gabor
micropatterns were summed where they overlapped.
The number of micropatterns per unit area varied as a
function of the spatial frequency of the micropatterns
such that the number of micropatterns per one degree
squared stimulus area was 0.6/se

2. For example, at the
center spatial frequency of 5 cpd, the number of micropat-
terns per one degree squared was equal to 97. Imple-
menting this density constraint ensured that coverage
and rms contrast between regions of differing spatial fre-
quency were, at least statistically, equal.

The spatial frequency, orientation, or contrast of the in-
dividual Gabor micropatterns was square-wave modu-
lated around a center spatial frequency of 5 cpd, a center
orientation of 0° (horizontal) and a Michelson luminance
contrast of 0.21. In the case of spatial-frequency modu-
lation the two spatial frequencies present in the texture
differed from the center spatial frequency by an equal
number of log-frequency units. The phase of the texture
modulation was randomized across trials. The stimulus
area contained two full cycles of the square-wave modu-
lation, corresponding to a bar width of 2.1°. The bars
were oriented vertically. Figure 3a displays an example
CM texture, with a modulation amplitude of 25%. Fig-
ure 3b displays an example of OM texture, with a modu-
lation amplitude of 8° (peak-to-trough difference of 16°).
Figure 3c displays an example FM texture, with a modu-
lation amplitude of 0.2 octave.

Textures were generated online in computer memory
and were presented on a Clinton Monoray monitor con-
trolled by a Cambridge Research Systems VSG 2/5 graph-
ics board. At the employed viewing distance of 100 cm,
the resolution of the monitor was equal to 42.3 pixels/deg.
3. PROCEDURE
Each trial consisted of the presentation of two textures,
one of which was modulated in orientation, spatial fre-
quency, or contrast. The task of the observers (the two
authors, NP and FK; and two naı̈ve observers, HW and
AW) was twofold. The observers were to indicate
whether the modulated texture was presented in the first
or the second interval and also to indicate the nature of
the texture modulation. Observers indicated their re-

Fig. 3. Example textures. a, CM texture; modulation ampli-
tude is 25%. b, OM texture; modulation amplitude is 8°. c, FM
texture; modulation amplitude is 0.2 octave.
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sponses through button presses. For three observers
(FK, HW, and AW) the order of the two responses was as
above. As a control, the response order was reversed in
half the blocks for NP. After both responses were made,
feedback was given in the form of two consecutive beeps
(the order of which matched the response order, the pitch
of which indicated whether the response was correct or in-
correct). In any given block of trials only two types of
modulation were presented. There were thus three types
of blocks, one pairing OM and FM textures, one pairing
OM and CM textures, and one pairing FM and CM tex-
tures.

The modulation depth on each trial was determined by
the method of constant stimuli. Each type of modulation
was presented at eight equally spaced depths of modula-
tion. However, owing to an error in the computer pro-
gram governing stimulus presentation and response col-
lection, responses made to trials in which the depth of
modulation of the test texture was 0 were miscoded, and
hence discarded, leaving data for seven depths of modu-
lation. An appropriate range of modulation depths was
determined for each type of modulation and each observer
separately in pilot trials.

Each texture in a trial was presented for 200 ms, sepa-
rated by an interval in which a blank screen (at mean lu-
minance) was presented for 500 ms. After the observer
completed the two required responses, feedback was
given and the next trial was initiated. The different
pairings of texture types were run in the following order:
OM–FM, OM–CM, FM–CM. All observers had normal
or corrected-to-normal vision.

4. ANALYSIS
The stimulus levels for the different modalities (OM, FM,
and CM) were first normalized into unitless measures so
that responses from the different modalities could be
meaningfully pooled into combined psychometric curves.
To accomplish this we assumed that the functions describ-
ing the probabilities that the underlying mechanisms
could detect the stimulus were accurately described by
Weibull curves for all three types of texture modulation.
To normalize the units of measurement, we fitted the de-
tection data for the three different types of texture with
individual Weibull curves. The normalized units of mea-
surement were then defined as

snorm 5 ~s/a!b/2, (2)

where snorm is the depth of modulation in normalized
units, s is the depth of modulation in the original units of
measurement (i.e., degrees, octaves, or percent), and a
and b are the threshold and slope parameters of the best-
fitting Weibull curve. In other words, all depth-of-
modulation levels were transformed such that the thresh-
old and slope parameters of the best-fitting Weibull
curves were 1 and 2, respectively, for all three types of
texture modulation after normalization. It should be
stressed that this transformation in no way affects the
goodness of fit of the curve fits; it merely serves to permit
psychometric curves from different types of texture modu-
lation to be combined on a single unitless scale.
The question we set out to answer asks, Is the mecha-
nism that underlies modulation detection labeled such
that at detection threshold the texture type can also be
identified? If so, the psychometric functions describing
the detection and identification performance of the under-
lying mechanisms should be identical. We cannot deter-
mine whether this is so by directly comparing proportions
correct of the detection and the identification task. The
reason is that whereas the proportion correct for any
given stimulus level on the detection task will not be in-
fluenced by a response bias, the proportion correct for any
given stimulus level on the identification task will be in-
fluenced by response bias. This is not because of any fun-
damental difference in the type of task; the difference is
purely one of a statistical nature. There is a similar bias
present in the detection task. An observer unable to de-
tect the stimulus might have a propensity toward re-
sponding ‘‘interval 1.’’ However, this response bias is sim-
ply averaged out when we combine trials in which the
stimulus was presented in the first interval with those in
which the stimulus was presented in the second interval.
The resulting function describing proportion correct thus
becomes

P~correctusnorm! 5 g 1 ~1 2 g!vd~snorm , ad , bd!, (3)

where g corresponds to the guessing parameter (here, 0.5)
and vd(snorm , ad , bd) corresponds to the Weibull func-
tion (with threshold parameter ad and slope parameter
bd) describing the probability that the underlying mecha-
nism is able to detect the stimulus as a function of nor-
malized stimulus level snorm . Note that ad and bd will
have values of 1 and 2, respectively, given that stimulus
levels were normalized in that manner [Eq. (2)].

In the case of the identification task, however, we can-
not simply average out response bias in this manner be-
cause responses in trials in which the type of modulation
was, say, OM are measured at (normalized) stimulus lev-
els different from those in trials in which the type of
modulation was, say, FM. Hence, whereas the propor-
tion correct for different stimulus levels in the detection
task follows a single curve, the effect of response bias
splits the proportions correct in the identification task
into two separate curves. One of the curves describes
proportion correct when the stimulus presented was one
type of texture modulation, and the other curve describes
proportion correct when the stimulus presented was the
other type of texture modulation. However, the normal-
ization of the stimulus intensity levels will enable us to
model the two split curves with a single curve. This un-
derlying curve describes the proportion of trials on which
the mechanisms mediating performance are able to iden-
tify the stimulus as a function of normalized stimulus in-
tensity. The underlying function will equal zero when
stimulus intensity equals zero and will asymptote toward
unity at high levels of stimulus intensity.

In order to model the identification function, we made
the following assumptions: If the mechanism is able to
identify the stimulus, the observer will make the correct
response; but if the mechanism is not able to identify the
stimulus, the observer will guess. We assume that the
function describing the identification probabilities is a
Weibull function v i(snorm , a i , b i). The guess is subject
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to bias such that observers will respond ‘‘stimulus type A’’
with probability PA and ‘‘stimulus type B’’ with probabil-
ity 1 2 PA . We further assume that PA is constant and
hence independent of v i(snorm , a i , b i).

The above assumptions lead to the following function
describing the probability of a correct identification given
that the stimulus presented was of type A and was pre-
sented at stimulus intensity snorm :

P~Au$A, snorm%! 5 v i~snorm , a i , b i!

1 @1 2 v i~snorm , a i , b i!#PA ,

which can be rewritten as

P~Au$A, snorm%! 5 PA 1 ~1 2 PA!v i~snorm , a i , b i!.
(4a)

Similarly, the probability of a correct identification
given that the stimulus presented was of type B is given
as

P~Bu$B, snorm%! 5 ~1 2 PA! 1 PAv i~snorm , a i , b i!.
(4b)

Testing the equivalence of the mechanisms underlying
the detection and identification of our textures amounts
to testing the equivalence of ad and a i and the equiva-
lence of bd and b i . To do so, we modeled our detection
and discrimination results using two models. Model 1
assumes a common mechanism underlying both detection
and identification of the textures, i.e., ad 5 a i and bd
5 b i . We will refer to the common parameters as ac
and bc . Model 2, on the other hand, assumes separate
mechanisms, i.e., ad Þ a i and/or bd Þ b i . In other
words, under Model 1 the proportions correct for the de-
tection and identification task are modeled as follows:

Model 1:

detection
P~correctusnorm! 5 0.5 1 ~1 2 0.5!vc~snorm , ac , bc!,

identification
P~Au$A, snorm%! 5 PA 1 ~1 2 PA!vc~snorm , ac , bc!,

P~Bu$B, snorm%! 5 ~1 2 PA! 1 PAvc~snorm , ac , bc!.

Under model 2, the proportions correct for the detection
and identification task are modeled as follows:

Model 2:

detection
P~correctusnorm! 5 0.5 1 ~1 2 0.5!vd~snorm , ad , bd!,

identification
P~Au$A, snorm%! 5 PA 1 ~1 2 PA!v i~snorm , a i , b i!,

P~Bu$B, snorm%! 5 ~1 2 PA! 1 PAv i~snorm , a i , b i!.

Model 1 requires the estimation of three parameters:
ac , bc , and PA . Model 2 requires the estimation of five
parameters: ad , a i , bd , b i , and PA . Our test statistic
is

l 5 22 loge@L~Xuãc , b̃c , P̃A!/L~Xuãd , b̃d , ã i , b̃ i , P̃A!#,
where L(Xuãc , b̃c , P̃A) represents the likelihood of the
entire set of responses (X) in a testing condition under
Model 1, with maximum-likelihood estimates of the three
parameters of Model 1. Similarly, L(Xuãd , b̃d , ã i , b̃ i ,
P̃A) represents the likelihood of the same set of responses
under Model 2, with maximum-likelihood estimates of the
five parameters of Model 2. Since the parameter space
under Model 1 is a subset of the parameter space under
Model 2, the random variable l is asymptotically distrib-
uted as x2 with degrees of freedom equal to 2 (the differ-
ence in the number of independent parameters between
the two models).18

5. RESULTS
Proportions correct as a function of the modulation depth
of the texture are plotted separately for all observers and
each of the three different combinations of texture type in
Fig. 4. The abscissas are linear in terms of the normal-
ized depth-of-modulation values @snorm , formula (2)].
Note that the functions describing proportions correct in
the identification task are split into two distinct curves
because of response bias, which in some cases was strong
[consider, for example, the identification results for AW in
the OM–CM combination, Fig. 4(b)]. It is imperative for
meaningful comparison of detection and identification
performance to remove the bias effect from the data by
modeling the probabilities of correct detection and identi-
fication by the underlying mechanisms as described in
Section 4. Goodness of fit of the individual curves was
assessed as suggested by Wichmann and Hill.19 That is,
for each of the fits a ‘‘deviance’’ score was calculated,
which was then compared with a distribution (n
5 500,000) of deviance scores obtained by Monte Carlo
simulations individually for each of the curves. Reported
in Table 1 are the proportions of simulated deviance
scores that were higher (indicating a worse fit) than the
empirically obtained deviance score. Only four20 of the
twenty-four deviance scores reached statistical signifi-
cance ( p , 0.05), indicating that the data were well mod-
eled by the Weibull function even after normalization of
depth-of-modulation values and combination of the differ-
ent texture types. The figure insets show the estimated
functions describing the probabilities that the underlying
mechanisms were able to detect the stimulus [i.e.,
vd(snorm , ad , bd) in formula (3); heavy curve] and iden-
tify the stimulus [i.e., v i(snorm , a i , b i) in formula (4);
light curve] as a function of the (normalized) modulation
depth. The abscissas of the insets are linearly scaled ver-
sions of those of the corresponding main figures.

The results of the authors (FK and NP) indicate that
for the OM–FM and OM–CM combinations the functions
describing the probabilities that the underlying mecha-
nisms will be able to detect the stimulus are virtually
identical to those describing the probabilities that the
mechanisms will be able to identify the stimulus. When
FM and CM textures were paired, however, identification
performance was significantly worse than detection per-
formance. These statements can be verified either by vi-
sual inspection of the insets in Fig. 4 or by the results of
the statistical analysis. Table 1 lists the identification
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Fig. 4. Continues on next page.
threshold-to-detection threshold ratios, the l values asso-
ciated with the statistical comparison between the detec-
tion and identification curves (see Section 4), and their
corresponding p values. The statistical analysis supports
both claims: None of the l values reached magnitudes
anywhere near statistical significance in the conditions
employing OM–FM or OM–CM pairings. For both au-
thors the l values did, however, reach statistically signifi-
cant levels when FM and CM textures were paired.

The results of the naı̈ve observers are not as straight-
forward. All but one of the six l values were statistically
significant, indicating that in all these conditions identi-
fication performance was significantly worse than detec-
tion performance for these observers. The one exception
lies in the results of HW in the condition in which OM
and CM textures were paired. Identification perfor-
mance here was no worse (at least not significantly) than
detection performance.

However, the naı̈ve observers follow the general trend
of the authors in that detection and identification perfor-
mance are very similar (even though significantly differ-
ent in the statistical sense) in the OM–FM and OM–CM
texture combinations but not in the FM–CM texture com-
bination. We hypothesize that the slightly worse perfor-
mance of the naı̈ve subjects on the identification task re-
flects secondary factors related to the task (such as
memory or response mapping). Remember that each
trial required two responses: one indicating in which in-
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Fig. 4. Detection and identification performance. Plotted are proportion correct detection and identification as a function of depth of
modulation for (a) OM–FM pairing of textures, (b) OM–CM pairing of textures, and (c) FM–CM pairing of textures. Abscissas are linear
with respect to depth of modulation in normalized units. Insets show modeled proportions of correct detection [i.e., vd(snorm , ad , bd)
of formula (3); heavy curve] and proportions of correct identification [i.e., v i(snorm , a i , b i) of formula (4); light curve] produced by the
underlying mechanisms for visual comparison. Abscissas of insets are linearly scaled versions of those of the main figures.

Table 1. Model Fitsa

Condition Observer pdet pdis a i /ad l p(l)

OM–FM NP 0.70 0.85 1.05 1.23 0.54
FK 0.95 0.43 1.10 3.08 0.21
AW 0.85 0.00 1.28 35.90 1 3 1028

HW 0.69 0.81 1.22 15.27 5 3 1024

OM–CM NP 0.95 0.01(20) 0.98 0.17 0.92
FK 0.47 0.95 0.98 0.06 0.97
AW 1.00 0.00 1.33 46.04 2 3 10210

HW 0.35 0.60 1.10 2.10 0.35

FM–CM NP 0.87 0.42 1.20 17.78 1 3 1024

FK 0.83 0.99 1.23 12.09 2 3 1023

AW 0.67 0.33 2.12 356.02 ;0
HW 0.87 0.00 1.60 73.66 1 3 10210

a Shown are p values for the goodness of fit of the Weibull curves fitted to the detection and discrimination data, obtained by assessing goodness of fit by
means of the deviance statistic and generating sampling distributions of this statistic for each individual condition by Monte Carlo simulation, as suggested
by Wichmann and Hill.19 The p values indicate the proportion of simulations in which a deviance score was obtained that was higher (indicating a worse
fit) than the empirical deviance score. Also shown are identification-to-detection threshold ratios, observed l, and corresponding p values. The p values
are interpreted as the probability of observing the indicated l value (or a higher l value) when detection and identification performance are statistically
equal. See text for details.
terval the modulated texture was presented and the other
indicating what type of texture was presented. It is in-
teresting to note that one of the naı̈ve observers (HW),
perhaps through a practice effect, did produce nearly
identical detection and identification curves in the second
condition in which he was tested (OM–CM pairing).

6. DISCUSSION
Our results indicate that texture modulations are identi-
fied as readily as they are detected when OM textures are
to be distinguished from either FM or CM textures.
However, when FM textures are paired with CM textures,
identification requires a higher depth of modulation com-
pared with that needed for detection. In Section 1 we
speculated that texture modulations could potentially be
identified by a mechanism that determines the nature of
first-order filters that produce maximum differential acti-
vation between different texture regions. We showed in
Fig. 2 that these filters are, in theory, different for each of
the three different types of texture modulation used in
this study.

We will discuss three possible reasons why FM textures
might be difficult to distinguish from CM textures within
the proposed framework. In theory, an FM texture
should lead to two groups of active FRFs: one with first-
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order filters tuned to spatial frequencies approximately
one half octave below the center spatial frequency of the
texture, the other with first-order filters tuned to spatial
frequencies approximately one half octave above the cen-
ter spatial frequency of the texture. However, as men-
tioned in Section 1, FM textures are processed primarily
by texture mechanisms with first-order filters tuned to
spatial frequencies centered approximately one octave be-
low the texture’s center spatial frequency. Prins and
Kingdom14 found only a slight hint that texture mecha-
nisms tuned to spatial frequencies above the center spa-
tial frequency were involved in the processing of FM tex-
tures. This is at least partly due to the physics of the
stimulus. The difference in energy between the two re-
gions of our FM textures is simply smaller at higher-
than-dc frequencies than the difference at lower-than-dc
frequencies. This can be verified by studying Fig. 2c
where the outer (high-frequency) differential-energy blob
is of lower peak amplitude than the inner (low-frequency)
blob. Moreover, the human visual system is differen-
tially sensitive to different spatial frequencies. Contrast
sensitivity drops off quite rapidly at high spatial
frequencies.21 At threshold amplitudes of FM modula-
tion, then, there will be only one group of active FRFs,
namely, those tuned to lower-than-dc spatial frequencies
[i.e., the inner (low frequency) blob in Fig. 2c]. As dis-
cussed in Section 1, however, a CM texture will also lead
to only one group of active FRF mechanisms (i.e., the
single blob in Fig. 2a). Moreover, the low-frequency blob
in Fig. 2c and the blob in Fig. 2a are both centered at the
same orientation (horizontal) and show considerable over-
lap in spatial frequency. The overlap corresponds to
mechanisms that are activated by both FM and CM tex-
tures. Especially at low depths of modulation (i.e., low
signal-to-noise ratio) it may be that on a proportion of tri-
als detection is triggered by a mechanism that receives its
front-end input from filters that have tuning properties
that fit both the low-frequency FM blob and the single CM
blob. In such a case it is not possible to determine
whether the mechanism was activated by an FM texture
or a CM texture, and hence identification will fail.

A second explanation for the confusability of CM and
FM textures is that contrast normalization does not occur
across different spatial frequencies.22 Some proposed
second-order models involve a stage of local contrast nor-
malization (e.g., Ref. 7) that serves to reduce local con-
trast variations. As a result of the normalization, the
overall response strength of second-order mechanisms
will depend more reliably on the spatial properties (e.g.,
orientation, spatial frequency) of the stimulus as random
contrast variations are removed. However, when con-
trast normalization indeed fails between regions of differ-
ent spatial frequency, random contrast variations are pre-
served. These contrast variations will be best detected
by FRF mechanisms with front-end luminance filters
tuned to orientations and spatial frequencies that are
close to the dc orientation and spatial frequency of the
texture. The failure of contrast normalization may thus
lead to occasional activation patterns of FRF mechanisms
that are normally indicative of a CM texture. On the
other hand, neither of the two activation patterns that
can be elicited by an FM texture is similar to the activa-
tion pattern elicited by an OM texture. In this case, the
modulation can be identified as an OM texture when the
pattern of activation fits that of an OM texture or as an
FM texture when the pattern of activation fits that of a
typical CM or a typical FM texture. As a result, identi-
fication performance in the condition in which FM tex-
tures are paired with OM textures is essentially identical
to detection performance.

A third possible reason for the confusability of FM and
CM textures might be that spatial-frequency information
is simply not, or not clearly, labeled. Note that both of
the conditions in which identification performance was
nearly identical to detection performance (OM–CM and
OM–FM) involved OM textures. It is possible that the
visual system does not place much value on spatial fre-
quency in retinal terms but rather has a tendency to treat
different retinal spatial frequencies as having arisen from
identical object spatial frequencies (i.e., size constancy).

What then, is the mechanism of identification? Our re-
sults are compatible with the idea that the distribution of
active FRF mechanism across the orientation and spatial-
frequency preferences of their first-order filters is moni-
tored and that this distribution of activity is used to dis-
ambiguate different types of texture modulations. The
nature of the mechanism that determines the distribution
of active FRF mechanism remains, for now, speculative.
In its simplest form, the mechanism that identifies a tex-
ture as OM might simply consist of an AND gate connect-
ing FRF mechanisms that receive their first-order input
from filters tuned to clockwise (relative to the center ori-
entation of the texture) orientations and FRF mecha-
nisms that receive their first-order input from filters
tuned to counterclockwise (again relative to the center
orientation of the texture) orientations. The two groups
of FRF mechanisms connected by the AND gate would
have to respond to the modulation in counterphase. For
example, an ON-center OFF-surround FRF mechanism
tuned to 30° clockwise from horizontal and a counter-
phase (OFF-center ON-surround) FRF mechanism tuned
to 30° counterclockwise from horizontal will respond in
phase to our OM textures (see Section 1). If both of these
mechanisms are activated by a texture (signaled by the
AND gate), it would indicate that the texture is OM
modulated. Similarly, the mechanism that identifies a
texture as FM might consist of an AND gate connecting
FRF mechanisms that receive their first-order input from
filters tuned to spatial frequencies that lie on either side
of the center spatial frequency of the texture. Again the
mechanisms connected by the AND gate would be in coun-
terphase.

Another possibility is that the visual system learns to
monitor the FRF mechanisms that receive their first-
order input from channels that are relevant for the spe-
cific situation. For example, in our OM–CM task the vi-
sual system may monitor only three groups of FRF
mechanisms: FRF mechanisms receiving first-order in-
put from filters tuned to (1) the dc orientation and dc spa-
tial frequency, (2) the dc spatial frequency and orienta-
tions ;30° clockwise from the dc orientation, and (3) the
dc spatial frequency and orientations ;30° counterclock-
wise from the dc orientation. Activation in group (1) of
the FRF mechanisms would signal a CM texture, whereas
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activation in group (2) or group (3) would signal an OM
texture. However, as mentioned, the exact nature of the
mechanism identifying texture modulations remains
speculative at this point and a possible subject of future
investigations.
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