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Abstract

Scale invariance refers to aspects of visual perception that remain constant with changes in viewing distance. Previously, Dakin

and Herbert [Proc. Roy. Soc. B. 265 (1397) (1998) 659] reported that the spatial integration region (IR) for mirror symmetry in

bandpass noise is scale invariant because its dimensions scale with the inverse of peak spatial frequency. In bandpass noise, however,

peak spatial frequency covaries with stimulus numerosity (i.e. the total number of information samples) and density (i.e. the total

number of information samples per unit area). In this study, we report four experiments that decoupled properties of the retinal

image affected by viewing distance––spatial frequency, numerosity, size, and density––and measured their effect on IR size. Stimuli

consisted of bandpass microelements with vertically mirror-symmetric but otherwise random positions, and we measured observer

resistance to random jitter imposed on microelement position. Results show that jitter resistance and IR size vary with the inverse of

stimulus density but are unaffected by changes in stimulus spatial frequency, numerosity, or size. We found the IR has a 2:1 height-

to-width aspect ratio and integrates information from �18 microelements regardless of their spatial separation. Our results reveal

that stimulus density plays a central role in the visual system’s implementation of scale invariance. Using an ideal-observer, we

demonstrate that scale invariance reflects genuine neural scale selection rather than a physical limitation on the stimulus’ infor-

mation content. Our findings that jitter resistance and IR size vary with the inverse of density challenge current models of spatial

vision but can be reconciled with a model that compares the output of bandpass non-Fourier mechanisms to select spatial scales that

match stimulus density. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Scale invariance refers to those aspects of visual
perception that remain constant with changes in view-
ing distance. Examples of scale invariance include our
ability to recognize a face or read text whether these
objects are, within limits, near or far. In the present
paper, we exploit mirror symmetry as a psychophysical
tool to investigate the stimulus properties (and corre-
sponding neural mechanisms) that human vision uses to
implement scale invariance. The remainder of this Sec-
tion describes our rationale in more detail.

1.1. Mirror symmetry and the spatial correspondence
problem

Mirror symmetry is a visual property with ecological
significance. For instance, the anatomy of most animals
exhibits approximate bilateral symmetry––a potent vi-
sual cue that can signal the presence of friend, foe, or
food otherwise camouflaged by an appropriate back-
ground (e.g. Enquist & Arak, 1994; Horridge, 1996;
Møller, 1995; Swaddle & Cuthill, 1994). However, mir-
ror symmetry should also be considered as a particularly
valuable psychophysical tool that provides insight into
the way in which human vision solves the more general
and more fundamental grouping problem, otherwise
known as the spatial correspondence problem.

The problem of spatial correspondence arises when
an observer must determine whether visual elements, say
two dots separated by some distance, are dependent or
independent of each other. To illustrate this, consider
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an array of dots positioned in a mirror-symmetric but
otherwise random fashion. Two non-symmetric dots are
independent since their positions are determined by
different causes (i.e. knowledge of one dot’s position
provides no information as to the position of the other).
Conversely, two symmetric dots are dependent since the
position of one dot is constrained by the position of the
other. In Barlow’s terminology (Barlow, 1959; Barlow &
Reeves, 1979), symmetric dots are said to be spatially
redundant whereas non-symmetric dots are not. Solving
the spatial correspondence problem––or the grouping
problem––amounts to detecting redundancies between
visual elements.

In principle, all images (including natural scenes) can
be described in terms of spatial redundancies, but in
practice natural scenes often make poor experimental
stimuli since their spatial structure is complex and only
partially understood (Field, 1987; Olshausen & Field,
1996; Simoncelli & Portilla, 1998). In this context, mir-
ror symmetry emerges as a better stimulus because the
correspondence problem is simple and well defined.
However, what sets symmetry detection apart from most
psychophysical tasks is that the correspondence problem
remains the same regardless of whether the statistical
structure of a stimulus class is simple (e.g. symmetric
white-noise patterns) or highly complex (e.g. symmetric
human faces). Symmetry detection is a valuable psy-
chophysical tool because it allows one to study how the
correspondence problem is solved in the context of im-
ages with variable complexity.

1.2. Scale invariance and the spatial integration region for
mirror symmetry

Because it factors out the effects of viewing distance
on the retinal image, scale invariance can be understood
as a transformation from a retino-centric to an object-
centric frame of reference; retino-centric properties vary
with viewing distance whereas object-centric properties
do not. Thus, the signature of scale-invariant perception
is characterized by variable performance when expressed
in retino-centric units (e.g. degrees of arc) but constant
performance when expressed in object-centric units (e.g.
centimeters).

In a study that serves as the starting point for the
present paper, Dakin and Herbert (1998) have shown
that symmetry perception in bandpass noise patterns is
limited to a spatial integration region (IR) whose di-
mensions are inversely proportional to stimulus peak
spatial frequency. This result is caricatured in Fig. 1
where the IR (dashed-line oval) is depicted for noise
patterns filtered for three constant-octave spatial-
frequency bands. The IR is scale invariant because its
dimensions change with retinal spatial frequency in a
way that includes a fixed number of object features (e.g.
black and white texture elements). However, what re-

mains unclear in the Dakin and Herbert study is whe-
ther the changes in IR size are dependent on spatial
frequency per se or on other stimulus properties that,
like spatial frequency, covary with viewing distance.

In the natural environment, changes in viewing dis-
tance introduce simultaneous changes in several prop-
erties of the retinal image including spatial-frequency,
size, numerosity, and density. Although the size of stim-
uli in Dakin and Herbert (1998) remained constant (see
Fig. 1), changes in spatial frequency were accompanied
by simultaneous changes in numerosity (e.g. the total
number of black and white texture elements) and den-
sity (e.g. the total number of black and white texture

Fig. 1. The integration region for mirror symmetry in bandpass noise

patterns. Vertically symmetric bandpass-filtered noise patterns of

various scales similar to the ones used in Dakin and Herbert (1998).

The approximate spatial IR measured for human observers is shown

by dashed lines.
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elements per unit area). In short, spatial frequency is
confounded with numerosity and density. In the present
study, we investigated which stimulus property––spatial
frequency, size, numerosity, or density––determines the
size of the IR for symmetry. Our data revealed that
density, not spatial frequency, size, or numerosity, is the
stimulus property the visual system uses to implement
scale invariance.

From this point onward, we define numerosity as the
square-root of the total number of texture elements
within an image of equal width and height. In other
words, numerosity refers to the number of elements per
stimulus dimension rather than to the number of ele-
ments per image. For example, a 4� 4 deg image with
16 elements would have a numerosity of 4 elements.
Defining numerosity in this way allows the number of
elements along the width and height dimensions of an
image to be considered separately as this will be more
convenient when we report both the height and width
of the IR instead of its area. Given our definition of
numerosity, density is simply numerosity divided by
stimulus size (i.e. width or height, depending which
stimulus dimension we consider). In the example just
given, the image has a density of 1.0 elem/deg.

Several psychophysical studies have investigated the
dimensions of the IR for mirror symmetry (e.g. Barlow
& Reeves, 1979; Bruce & Morgan, 1975; Dakin &
Herbert, 1998; Dakin & Hess, 1997; Jenkins, 1982;
Julesz, 1971; Rainville & Kingdom, 1999b; Rainville &
Kingdom, 2000b; Tyler, Hardage, & Miller, 1995;
Wenderoth, 1995) and while most report a preference
for information proximal to the axis of symmetry, none
have decoupled the effects of spatial frequency, size,
numerosity, or density on IR size. However, two studies
have explicitly addressed the issue of stimulus numer-
osity and/or density in the context of symmetry per-
ception. Tyler and Hardage (1996) measured sensitivity
to vertical even- and odd-symmetry in textures com-
posed of black and white Gaussian blobs defined by
either 10% or 100% pixel density. Whereas the envelope
of low-density textures was heavily modulated across
space, the envelope of high-density textures remained
approximately flat. With these stimuli, the authors ex-
plored the differential contribution of Fourier (i.e. first-
order) and non-Fourier (i.e. second-order) mechanisms
to symmetry perception. Tyler and Hardage found that
in the 10% density condition, performance remained
approximately constant irrespective of whether symme-
try was even or odd, thereby suggesting that non-
Fourier mechanisms mediate symmetry perception in
low-density stimuli. In the 100% density condition, in
which only a small amount of non-Fourier structure was
present, performance was higher for even symmetry
than for odd symmetry, thereby suggesting that Fourier
mechanisms mediate symmetry perception in high-den-
sity stimuli. While the results from Tyler and Hardage

do not distinguish between the effects of stimulus spatial
frequency, numerosity, size, and density, they emphasize
the contribution of non-Fourier mechanisms to sym-
metry perception.

Using a yes–no paradigm, Wenderoth (1996) asked
observers to make judgments for random-dot patterns
that were either perfectly symmetric or completely ran-
dom. Percent correct was measured for several combi-
nations of dot number and stimulus size. Data revealed
no systematic relationship with numerosity, stimulus size,
or density although performance generally improved as
numerosity decreased. However, the fact that IR size
was not measured makes results from Wenderoth (1996)
difficult to interpret. Also, because stimuli were either
perfectly symmetric or completely random, no psycho-
physical thresholds were computed.

1.3. Rationale

To decouple the effect of spatial frequency from those
of stimulus numerosity and density, spatial frequency
must be manipulated while holding the other stimulus
properties constant. In Experiment 1 we measured the
width and height of the IR using patterns consisting of
a constant number of fixed-size bandpass microelements
arranged in a mirror-symmetric but otherwise ran-
dom fashion. Unlike bandpass noise patterns, the spatial
frequency of our stimuli is specified by the carrier spatial
frequency of the microelements and is therefore inde-
pendent of microelement numerosity or density.

Decoupling numerosity and density is somewhat
more difficult since the simple relationship density ¼
numerosity=size illustrates that numerosity, size, and
density are interdependent variables. Nonetheless, it is
possible to control for one of these variables by holding
one variable constant while covarying the other two (e.g.
density is held fixed while numerosity and size covary).
In Experiments 2, 3, and 4, we measured the width and
height of the IR for stimuli of fixed numerosity, size, and
density, respectively. The same methodology has been
used by Dakin (2000) to study sampling efficiency in
orientation-pooling mechanisms, and we compare his
set of results with ours in Section 8. Part of the present
research has been reported at conferences (Rainville &
Kingdom, 1999a; Rainville & Kingdom, 2000a) and has
been included in the first author’s doctoral thesis
(Rainville, 1999).

2. General method

2.1. Observers

The first author, SR, participated in all experi-
ments. The second author, FK, participated in Experi-
ments 2 and 3. A naive observer, LC, participated in
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Experiments 1 and 4. All observers had normal or cor-
rected-to-normal vision.

2.2. Hardware and calibration

Experiments were carried out using a Power Macin-
tosh 7600/120 computer upgraded to a G3/180 main
processor. Additional data were collected using a Power
Macintosh G4/450. The two computers hosted standard
8-bit/gun color video cards driving a 17 in. Sony Mul-
tiscan monitor and a 21 in. Apple studio display moni-
tor, respectively. Both monitors were set to a 68 Hz
refresh rate. Luminance profiles were measured using a
calibrated spot photometer for every fourth index of a
256-index grayscale lookup table (LUT) and modeled
with best-fitting (least-squares) gamma functions. From
the inverse gamma functions, we computed LUTs whose
indexes corresponded to linear increments in luminance.
After linearization, both display had an effective gray-
scale LUT depth of 7.1 bits and mean luminance was set
to 33 cd/m2.

2.3. Stimuli

In all experiments, stimuli were scaled to mean lu-
minance and 0.5 Michelson contrast. Patterns were
composed of bandpass microelements positioned in a
vertically symmetric but otherwise random fashion. If,
by chance, elements were positioned such that part of
their spatial profile fell outside the boundaries of the
stimulus, left-over portions were neatly wrapped around
to the other side of the image using the modulo opera-
tor. This ensured that no physical information was lost
due to the occlusion of microelements by the stimulus
aperture.

In Experiment 1, bullseye microelements consisted of
radial sinusoids of variable spatial frequency windowed
by a fixed-size spatial Gaussian function. The spatial
profile of microelements, m, is given by

mðx; yÞ ¼ exp �ðr � r0Þ2

2r2

" #
cos½2pðr � r0Þ=k� ð1Þ

where r is the radius given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
around an origin

r0, and where r and k are the envelope space constant
and the carrier’s spatial period, respectively.

In Experiments 2–4, the spatial profile of microele-
ments, m, was defined in the Fourier domain by an
isotropic bandpass log-Gaussian function Mðu; vÞ where
u and v are the dimensions of a two-dimensional Car-
tesian spatial-frequency coordinate system. Mðu; vÞ is
given by

Mðu; vÞ ¼ exp � 1

2

lnðf =f0Þ
lnðrÞ

� �2
" #

ð2Þ

where f is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
. Center spatial-frequency

f0 was fixed to 2.5 cdp and r was set to 1.4 which cor-
responds to a full bandwidth at half-height of 1.2 oc-
taves. The spatial profile m was obtained by computing
the reverse Fourier transform mðx; yÞ ¼ ReðF�1fMðu;
vÞgÞ. Microelements were spatially localized by virtue
of the fact that all Fourier components were in cosine
phase.

To obtain meaningful measures of human perfor-
mance, we degraded perfect symmetry by adding ran-
dom jitter to the position of each microelement.
Positional jitter was introduced independently in the x
and y dimensions by randomly sampling from a uniform
(i.e. flat) distribution of variable width––measured in
degrees of arc––centered on zero. In all experiments, we
fitted a two-parameter log x cumulative normal to the
percent-correct vs. jitter data and computed the jitter
level corresponding to 75% correct. We used this jitter
level as our measure of jitter resistance, i.e., the maxi-
mum amount of spatial jitter observers can tolerate and
still reach criterion performance. Geometric error bars
were computed using a bootstrap technique (Efron &
Tibshirani, 1993) in which we randomly resampled and
refit the data 100 times, obtained a distribution of jitter-
resistance values, and took the standard deviation of
this distribution as our measure of error.

To measure the width and height of the IR, we used
a procedure similar to the one in Dakin and Herbert
(1998) and Rainville and Kingdom (2000b). For stimuli
in the symmetric condition, microelements falling within
a central window of variable width or height were as-
signed symmetric positions; elements outside the win-
dow were assigned random positions. From studies cited
above, the expected effect of window size on perfor-
mance is the following. For small window sizes, jitter
resistance is poor since most of the stimulus is covered
by non-symmetric elements. For larger window sizes,
performance improves because more symmetric ele-
ments are made available to the observer. However,
jitter resistance asymptotes once window size exceeds
the dimensions of the IR since, by definition, observers
are insensitive to mirror symmetry for elements falling
outside the IR. We used the window size corresponding
to asymptotic knee-point in performance as our measure
of IR size.

2.4. Procedure

In all experiments, stimuli were computed in the
MATLAB 5.2.1 environment and consisted of 64� 64,
128� 128, or 256� 256 pixel matrices depending on
stimulus size. Patterns were shown using high-level in-
terfaces from PsychToolbox� (Brainard, 1997) calling
lower-level routines from VideoToolbox� (Pelli, 1997).
Viewing distance was set to 68 cm (17 in. monitor,
640� 480 pixels) or to 80 cm (21 in. monitor, 640� 480
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pixels) such that one pixel subtended 0:044� 0:044 deg.
This bracketed the spatial frequency content of the
largest test patterns between 0.1 and 11.4 cycles per
degree (cpd) although these limits were not attained
because our stimuli were bandlimited.

In all experiments, observers discriminated between
symmetric and non-symmetric images in a two-alterna-
tive forced-choice (2AFC) paradigm using a method of
constant stimuli. The order of presentations was ran-
domly interleaved across trials, and observers pressed
one of two keys to report the interval that appeared
more symmetric. Images were presented for 250 ms (or
the equivalent of 17 screen refreshes at 68 Hz) and were
separated by an inter-stimulus-interval (ISI) of 250 ms.
A low-contrast fixation dot corresponding to the center
of the stimulus was shown before every presentation
to ensure that the axis of symmetry was foveated.
Observers received auditory feedback on incorrect re-
sponses. Each run consisted of forty observations at one
jitter level, and jitter level was randomized across runs.
Although the total number of runs varied, a minimum
of 80 observations were collected for every data point
presented in the paper.

3. Experiment 1: the effect of spatial frequency

This experiment investigated the effects of spatial
frequency on the IR without altering stimulus numero-
sity, size, or density. We used fixed-size stimuli (11.2
deg) with a numerosity of 5.7 elem and a density of 0.5
elem/deg. Microelements had one of three carrier spatial
frequencies (1.9, 3.8, and 7.7 cpd) but their envelope size
remained fixed (r ¼ 0:18 deg). Due to their high con-
trast, patterns were easily visible even for highest spatial
frequency (7.7 cpd). We measured jitter resistance as a
function of the height or width of symmetric windows
that systematically varied in equal log-steps from 0.20
deg (1.75% of stimulus) to 11.2 deg (100% of stimulus).
Fig. 2 shows examples of stimuli for the three spa-
tial frequencies used (rows). For illustration purposes,
symmetric windows are shown here at half stimulus
width (first column) and half stimulus height (second
column) by dashed lines, and microelement position
were not jittered.

Fig. 3 plots jitter resistance as a function of window
width (top graphs) and window height (bottom graphs)
for observers SR and LC. Filled triangles, squares, and
circles correspond to spatial frequencies of 1.9, 3.8, and
7.7 cpd, respectively. Solid lines are the best fit of a four-
parameter log–log cumulative normal to the data. Error
bars show 1 mean and maximum standard deviation.

Fig. 3 shows that in all conditions, jitter resistance
improves but tends towards an asymptote as window
size increases. The key aspect is that data at different
spatial frequencies are virtually superimposed and that

knee-points coincide. The agreement between data from
different spatial-frequency conditions demonstrates that
IR size is independent of spatial frequency. Our results
also imply that, counter to the conclusions of Dakin and
Herbert (1998), the IR size in bandpass noise patterns is
determined not by spatial frequency but by some other
stimulus property.

4. Parameters for experiments 2–4

The remaining three experiments focus on decou-
pling the effects of stimulus numerosity, size, and density
on IR size and jitter resistance. As outlined in Section
1.3, each experiment requires that one stimulus prop-
erty (e.g. numerosity) be held fixed while the other two
properties (e.g. size and density) covary. Table 1 pro-
vides a summary of conditions in each experiment.

5. Experiment 2: fixed numerosity—size and density

covary

This experiment controlled for stimulus numerosity
and determined whether numerosity is, by itself, a good
predictor of IR size. We fixed numerosity to 22.6 elem
and allowed stimulus size to covary with density. We
used three size–density pairings, namely {2.8 deg; 8.1
elem/deg}, {5.6 deg; 4.0 elem/deg}, and {11.2 deg; 2.0
elem/deg}. Because numerosity ¼ size� density, the
product within each size–density pairing is necessarily
22.6 elem.

We measured jitter resistance as a function of the
width and height of symmetric windows that systemati-
cally varied in equal log-steps from 0.20 deg until 100%
of the stimulus was covered. Fig. 4 shows examples
of stimuli for the three size–density pairings we used
(rows). Symmetric windows are shown here at half width
(first column) and half height (second column) by da-
shed lines, and the position of symmetric elements has
not been jittered.

Fig. 5 plots jitter resistance as a function of window
width (top graphs) and window height (bottom graphs)
for observers SR and FK. Filled circles, squares, and
triangles correspond to size–density pairings of {2.8 deg;
8.1 elem/deg}, {5.6 deg; 4.0 elem/deg}, and {11.2 deg;
2.0 elem/deg}, respectively. Solid lines are the best fits
of four-parameter log–log cumulative normals for
data from each of the size–density pairings. Error bars
show 1 mean and maximum standard deviation.

Fig. 5 shows that in all conditions, jitter resistance
improves but tends towards an asymptote as we increase
window size. The key aspect is that data from different
size–density pairings do not overlap. In particular, the
size of the IR (defined by performance knee-points) in
large low-density images is clearly larger than in small
high-density images. Our finding that jitter resistance is
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not constant but instead depends on the size–density
pairing is also of interest. We further discuss the impli-
cation of these findings in Section 8.

6. Experiment 3: fixed size—numerosity and density

covary

This experiment controlled for stimulus size and de-
termined whether stimulus size is, by itself, a good pre-
dictor of IR size. We fixed stimulus size to 11.2 deg and
allowed numerosity and density to covary. We used
three numerosity–density pairings, namely {5.7 elem; 0.5
elem/deg}, {22.6 elem; 2.0 elem/deg}, and {90.5 elem;
8.1 elem/deg}. Because size ¼ numerosity=density, the

ratio within each numerosity–density pairing is neces-
sarily 11.2 deg.

We measured jitter resistance as a function of the
width and height of symmetric windows that systemat-
ically varied in equal log-steps from 0.20 to 11.2 deg.
Fig. 6 shows examples of stimuli for the three size–
density pairings we used (rows). For illustration pur-
poses, symmetric windows are shown here for a fixed
width (first column) and fixed height (second column)
by dashed lines, and elements have not been jittered.

Fig. 7 plots jitter resistance as a function of window
width (top graphs) and window height (bottom graphs)
for observers SR and FK. Filled circles, squares, and
triangles correspond to size–density pairings of {90.5
elem; 8.1 elem/deg}, {22.6 elem; 2.0 elem/deg}, and

Fig. 2. Stimuli for Experiment 1. Stimuli consist of 32 bullseye microelements with one of three carrier spatial frequencies (1.9, 3.8, and 7.7 cpd) but

fixed envelope size. Stimulus size, numerosity, and density also remained constant. Symmetric windows (dashed lines) are shown at half stimulus

width (first column) and half stimulus height (second column).
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{5.7 elem; 0.5 elem/deg}, respectively. Solid lines are the
best fits of four-parameter log–log cumulative-normals
for data from each of the size–density pairings. Error
bars show 1 mean and maximum standard deviation.

Fig. 7 shows that in all conditions, jitter resistance
improves but tends towards an asymptote as we increase
window size. The key aspect is that data from different
numerosity–density pairings do not overlap. In partic-
ular, the size of the IR (defined by performance knee-
points) in low-numerosity low-density images is clearly
larger than in high-numerosity high-density images. Our

finding that jitter resistance is not constant but instead
depends on the numerosity–density pairing is also of
interest. We further discuss the implication of these
findings in Section 8.

7. Experiment 4: fixed density—numerosity and size

covary

This experiment controlled for density and deter-
mined whether stimulus density is, by itself, a good
predictor of IR size. We fixed stimulus density to 8.1
elem/deg and allowed numerosity and size to covary. We
used three numerosity–size pairings, namely {22.6 elem;
2.8 deg}, {45.3 elem; 5.6 deg}, and {90.5 elem; 11.2 deg}.
Because density ¼ numerosity=size, the ratio of each
numerosity–size pairing is necessarily 8.1 elem/deg.

We measured jitter resistance as a function of the
width and height of symmetric windows that systemat-
ically varied in equal log-steps from 0.20 deg until 100%
of the stimulus was covered. Fig. 8 shows examples of
stimuli for the three numerosity–size pairings we used
(rows). For illustration purposes, symmetric windows
are shown at half width (first column) and half height
(second column) by dashed lines, and element positions
of were not jittered.

Fig. 9 plots jitter resistance as a function of win-
dow width (top graphs) and window height (bottom

Fig. 3. Results of Experiment 1. Jitter resistance is plotted as a function of window width (top graphs) and window height (bottom graphs) for

observers SR and LC. Filled triangles, squares, and circles correspond to spatial frequencies of 1.9, 3.8, and 7.7 cpd, respectively. Solid lines are the

best fit of a four-parameter log–log cumulative normal to the data. Error bars show 1 mean and maximum standard deviation.

Table 1

Parameters for Experiments 2–4

Numerosity

(elem)

Size (deg) Density

(elem/deg)

Experiment 2

(fixed numerosity)

22.6 2.8 8.1

22.6 5.6 4.0

22.6 11.2 2.0

Experiment 3

(fixed size)

5.7 11.2 0.5

22.6 11.2 2.0

90.5 11.2 8.1

Experiment 4

(fixed density)

22.6 2.8 8.1

45.3 5.6 8.1

90.5 11.2 8.1

Columns list numerosity, size, and density conditions for experiments

2–4. Note that in each experiment, one stimulus property is held fixed

while the other two covary.
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graphs) for observers SR and LC. Filled circles, squares,
and triangles correspond to the numerosity–size pair-

ings of {22.6 elem; 2.8 deg}, {45.3 elem; 5.6 deg}, and
{90.5 elem; 11.2 deg}, respectively. Solid lines are the

Fig. 4. Stimuli for Experiment 2. Fixed-numerosity stimuli with three size–density pairings: {2.8 deg; 8.1 elem/deg}, {5.6 deg; 4.0 elem/deg}, and

{11.2 deg; 2.0 elem/deg} along the rows. Symmetric windows are shown here at half width (first column) and half height (second column) by dashed

lines. The position of symmetric elements has not been jittered.

Fig. 5. Results of Experiment 2. Jitter resistance is plotted as a function of window width (top graphs) and window height (bottom graphs) for

observers SR and FK. Filled circles, squares, and triangles correspond to size–density pairings of {2.8 deg; 8.1 elem/deg}, {5.6 deg; 4.0 elem/deg}, and

{11.2 deg; 2.0 elem/deg}, respectively. Solid lines are the best fits of four-parameter log–log cumulative normals for data from each of the size–density

pairings. Error bars show 1 mean and maximum standard deviation.
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best fits of four-parameter log–log cumulative normals
for data collapsed across all numerosity–size pairings.
Error bars show 1 mean and maximum standard de-
viation.

Fig. 9 shows that in all conditions, jitter resistance
improves but tends towards an asymptote as we increase
window size. The key aspect is that data from different
numerosity–size pairings are virtually superimposed and
are well fit by a single function. In particular, the size of
the IR (defined by performance knee-points) in small
low-numerosity images is the same as in large high-
numerosity images. Our results show that density, not
spatial frequency, numerosity, or stimulus size, is the
factor that predicts the size of the IR. Our finding that
jitter resistance is constant for all numerosity–size pair-

ings is also of interest. We further discuss the implica-
tion of these findings in Section 8.

8. Discussion

8.1. Scale invariance is driven by stimulus density

Collectively, Experiments 1–4 demonstrate that stim-
ulus density, not spatial frequency, numerosity, or size,
determines jitter resistance and IR size. But how do
IR size and jitter resistance change as a function of
density? Data from Experiments 2 and 3 (see Figs. 5
and 7) are revealing in this respect since they show that
jitterresistance and IR size increase as stimulus density

Fig. 6. Stimuli for Experiment 3. Fixed-size stimuli with three numerosity–density pairings: {5.7 elem; 0.5 elem/deg}, {22.6 elem; 2.0 elem/deg}, and

{90.5 elem; 8.1 elem/deg} along the rows. Symmetric windows are shown here at half width (first column) and half height (second column) by dashed

lines. The position of symmetric elements has not been jittered.
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decreases. If jitter resistance and IR size are inversely
related to density (1=d), then multiplying jitter and
window size by d should remove the effect of density, in

which case all data from Experiments 1–4 should over-
lap. Elementary algebra reveals that multiplying window
size w by density d leaves elements as the metric since

Fig. 7. Results of Experiment 3. Jitter resistance is plotted as a function of window width (top graphs) and window height (bottom graphs) for

observers SR and FK. Filled circles, squares, and triangles correspond to size–density pairings of {90.5 elem; 8.1 elem/deg}, {22.6 elem; 2.0 elem/

deg}, and {5.7 elem; 0.5 elem/deg}, respectively. Solid lines are the best fits of four-parameter log–log cumulative normals for data from each of the

size–density pairings. Error bars show 1 mean and maximum standard deviation.

Fig. 8. Stimuli for Experiment 4. Fixed-density stimuli with three numerosity–size pairings:{22.6 elem; 2.8 deg}, {45.3 elem; 5.6 deg}, and {90.5 elem;

11.2 deg} along the rows. Symmetric windows are shown here at half width (first column) and half height (second column) by dashed lines. The

position of symmetric elements has not been jittered.
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w� d ¼ deg� elem

deg
¼ elem:

Similarly, multiplying jitter j by density d also leaves
elements as the metric. The consequence of multiplying
jitter and window size by density is to transform those
two variables from a retino-centric frame of reference
(i.e. visual angle) into object-centric frame of reference
(i.e. elements).

Fig. 10 replots jitter resistance for the three observers
(rows) as a function of window width and height (col-
umns) for all data gathered in Experiments 1–4. The
only difference with previous data plots is that jitter re-
sistance and window size are expressed in terms of ele-
ments (elem) rather than in visual angle (deg). Solid lines
are the best fits of four-parameter log–log cumulative
normals to the data in each graph. Arrows on the x axis
indicate the window size corresponding to a factor-of-
two drop in performance from maximal jitter resistance.
We used this latter criterion as our measure of IR size.

Fig. 10 shows that, allowing for some intra-observer
variability, data from all experiments collapse onto a
single function when expressed in an object-centric ra-
ther than a retino-centric frame of reference. Averaged
across observers, the IR width and height include �3
and 6 elements, respectively. The IR’s height-to-width
aspect ratio is nearly 2:1, the same ratio reported by
Dakin and Herbert (1998) in bandpass-filtered random

noise patterns. Although the precise shape of the IR is
unknown, the product of IR width and IR height sug-
gests that the IR integrates �18 elements. Table 2 shows
the breakdown of IR width, height, aspect ratio, and
area across observers.

With respect to jitter resistance, Fig. 10 reveals
that, on average, observers SR, FK, and LC tolerated a
maximum of 1.4, 1.0, and 1.3 elements, respectively.
Across observers, the geometric mean for jitter resis-
tance was 1.2 elements. Jitter resistance, when expressed
in elements rather than in visual angle, simply refers to
the number of elements that fall within the region of
space over which an element’s position is randomized.
The fact that jitter resistance is in neighborhood of one
element means that positional jitter can be tolerated
until it exceeds the average spacing between elements. If
positional jitter exceeds average element spacing, then
adjacent elements are confused for one another and
positional information is lost to the observers.

Transforming retinal units into object units is key in
achieving scale invariance. In the natural environment,
changes in viewing distance introduce simultaneous
changes in the spatial-frequency, numerosity, size, and
density of the retinal image, and it is therefore ambig-
uous which of these four properties the visual system
uses to achieve scale invariance. In the present study, we
have shown that jitter resistance and IR size scale with
the inverse of density (1=d) in retinal units (i.e. visual

Fig. 9. Results of Experiment 4. Jitter resistance is plotted as a function of window width (top graphs) and window height (bottom graphs) for

observers SR and LC. Filled circles, squares, and triangles correspond to the numerosity–size pairings of {22.6 elem; 2.8 deg}, {45.3 elem; 5.6 deg},

and {90.5 elem; 11.2 deg}, respectively. Solid lines are the best fits of four-parameter log–log cumulative normals for data collapsed across all

numerosity–size pairings. Error bars show 1 mean and maximum standard deviation.
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angle) but remain constant in object units (i.e. elements).
Thus, our data reveal that for our stimuli, scale invari-
ance is driven by stimulus density, not by stimulus spatial
frequency, numerosity, or size. We should emphasize that
our finding that the IR includes a constant number of

elements does not mean that stimulus numerosity is
somehow a special variable. The number of elements
integrated by the IR is a property of the visual system,
and this quantity has no lawful relationship to stimulus
numerosity (a variable we can control).

Table 2

Width, height, and area of integration region (number of elements)

Observer Width (elem) Height (elem) Width-to-height aspect ratio Width–height product (elem2)

SR 3.14 5.31 1:1.69 16.69

FK 2.64 5.10 1:1.93 13.46

LC 3.19 8.02 1:2.51 25.61

Geometric mean 2.98 6.01 1:2.02 17.92

Estimates of IR width, height, aspect ratio, and area expressed for observers SR, FK, and LC. Measurements are expressed in terms of number of

elements. Geometric means across observers are also given.

Fig. 10. Visual angle vs. number of elements. Jitter resistance is plotted for the three observers (rows) as a function of window width and height

(columns) for all data gathered in Experiments 1–4. Unlike in previous plots, jitter resistance and window size are expressed in number of element

(elem) rather than in visual angle (deg). Solid lines are the best fits of four-parameter log–log cumulative normals to the data in each graph. Arrows

on the x axis indicate the window size corresponding to a factor-of-two drop in performance from maximal jitter resistance. We use this later criterion

as our measure of IR size.
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There are several reports of scale invariance in human
vision (e.g. Joseph, Victor, & Optican, 1997; Landy &
Bergen, 1991; Nothdurft, 1985; Parish & Sperling,
1991). Although their results are not incompatible
with ours, they also do not distinguish between the ef-
fects of spatial frequency, numerosity, size, and den-
sity. However, two recent papers are directly relevant to
our study. First, Dakin (2000) measured the effects of
orientation variability on the ability of observers to es-
timate mean orientation in arrays of oriented microele-
ments. Holding either texture numerosity, size, or
density constant while allowing the other two variables
to covary, the author revealed that performance is a
power-law function of the number of orientation sam-
ples in the texture irrespective of microelement position.
Data also revealed that internal noise is predominantly
determined by local texture density, not texture num-
erosity or size. Results from Dakin (2000) agree with
ours insofar as the spatial extent of pooling is not fixed
(in terms of visual angle) but is determined instead by
stimulus density. This similarity between our respective
data sets is interesting given that symmetry detection
and orientation pooling are fundamentally different
tasks: unlike orientation pooling, symmetry detection
necessarily requires that spatial position be encoded.
Second, Kingdom and Keeble (1999) investigated
mechanisms mediating scale invariance for orientation-
modulated textures and found that scale invariance was
more disrupted by spatial frequency than density. These
results disagree with ours and raise the possibility that,
in cases where both positional and local orientation in-
formation are important, density is not the only variable
that governs scale invariance.

8.2. Fourier vs. non-Fourier mechanisms

Barlow and Reeves (1979) have demonstrated that
the ideal observer for perfectly symmetric displays fails
if dot positions are jittered even slightly because corre-
sponding dots no longer fall in exact mirror locations.
The same authors have also shown that to overcome the
problem of positional jitter, the ideal observer must in-
clude a spatial filtering stage that precedes the compu-
tation of symmetry. Although this filtering reduces
spatial resolution, it makes the ideal observer more
robust by discarding positional information within the
area where dot placement is randomized. Therefore, as
positional jitter increases, the ideal observer must rely
on increasingly coarse spatial filters.

Our study has revealed that jitter resistance is not
fixed but rather varies with the inverse of stimulus
density (1=d). In accordance with Barlow and Reeves
(1979), our results imply that symmetry detection is
preceded by a filtering stage whose spatial scale is also a
function of 1=d. However, the fact that our stimuli were
narrowband adds another complexity to this filtering

stage. As we show below, the ability of human observers
to operate at spatial scales where no Fourier energy
exists constitutes additional evidence that, as Tyler and
Hardage (1996) first revealed (see Section 1.2), non-
Fourier mechanisms are involved in symmetry detec-
tion.

Unlike their Fourier counterpart, non-Fourier
mechanisms are non-linear by definition. Models such as
the ‘‘backpocket’’ model of Chubb and Landy (1991)
typically follow a filter–rectify–filter architecture where
the output of bandpass Fourier mechanisms passes
through a non-linearity (e.g. an energy operator) before
undergoing further filtering. Human vision is sensitive to
non-Fourier structures which includes spatial variations
in contrast (e.g. Jamar & Koenderink, 1985; Sutter,
Sperling, & Chubb, 1995), orientation (e.g. Kingdom,
Keeble, & Moulden, 1995), or spatial frequency (e.g.
Arsenault, Wilkinson, & Kingdom, 1999)––see Wilson
(1999) for review, although see Kingdom and Hayes
(2000) and Kingdom and Keeble (2000) for alternative
viewpoints.

Fig. 11 shows a scale-space analysis of the Fourier
and non-Fourier energy content of three bandpass lu-
minance patterns (panel A) similar to the ones used in
Experiment 3 (fixed size––numerosity and density co-
vary). The three luminance profiles consist of 6, 22, and
90 bandpass elements and have densities of 0.5, 2.0, and
8.0 elem/deg, respectively. Profiles are mirror-symmetric
about their midpoint, and element positions have not
been jittered. Panel B depicts the distribution of Fourier
energy (in white) over space (x axis) and spatial fre-
quency (y axis) for each of the three luminance profiles.
For any one given spatial frequency, Fourier energy was
computed by convolving luminance profiles with band-
pass quadrature-pair filters (cosine-and sine-phase) and
summing their squared output. Spatial filters had con-
stant-octave bandwidths and constant-area point-spread
functions to ensure that filter outputs were not biased
for any one particular scale (Brady & Field, 1995). Panel
C shows the distribution of non-Fourier energy over
space and frequency for each of the three luminance
profiles. The only difference between Fourier and non-
Fourier energy plots is that we applied our scale-space
analysis to the envelope of the luminance profiles rather
than on the luminance profiles directly. In all other
aspects, Fourier and non-Fourier energy profiles were
computed in the same way. Energy plots have not been
individually normalized are therefore on the same in-
tensity scale.

Panel B of Fig. 11 illustrates that, as in Experiments
2–4, Fourier energy lies in a 1.2-octave frequency band
centered on 2.5 cpd irrespective of stimulus density. Yet,
results from Experiment 3 (see Fig. 7) show that for a
density of 0.5 elem/deg, human observers resisted jitter
levels as high as 2 deg (i.e. 0.5 cpd), or more than two
octaves away from the Fourier band’s center frequency.
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Although Fourier energy is absent at 0.5 cpd, panel C
reveals the presence of significant non-Fourier energy
which observers presumably can use to resist the effects
of positional jitter.

8.3. Scale selection

The scale-space analyses of Fig. 11 show that non-
Fourier energy is present at low spatial frequencies for
the three densities used in our study. Although these
coarse non-Fourier components can account for high
jitter resistance in low-density stimuli, they also raise the
problem of why jitter resistance is poor in high-density
stimuli. Experiments 2–4 revealed that in the highest
density condition (8.1 elem/deg), jitter resistance falls
between 0.1 and 0.2 deg (i.e. between 5.0 and 10.0 cpd)
yet, as shown in panel C of Fig. 11, non-Fourier energy
is available at considerably lower spatial frequencies.

Additional evidence that non-Fourier energy is not
tapped in high-density stimuli comes from patterns
where mirror symmetry is defined by corresponding
elements of opposite contrast polarities. In line with
findings from Tyler and Hardage (1996), we have data
from narrowband stimuli (Rainville, 1999) which show
that contrast polarity has no effect on performance at
low densities but hinders performance considerably at
high densities. Unlike their Fourier counterpart, non-
Fourier mechanisms are insensitive to contrast polarity
and therefore cannot account for poorer performance
in opposite-contrast high-density stimuli.

If, as panel C of Fig. 11 reveals, coarse non-Fourier
components were available in our high-density stimuli,
then why did human observers not use them to better
resist the effect of positional jitter? One possibility is that
the coarse non-Fourier content of our high-density stim-
uli contained little or no information about mirror

Fig. 11. Fourier and non-Fourier cross-scale image structure. (A) Three one-dimensional luminance profiles consisting of 6, 2, and 90 bandpass

elements with densities of 0.5, 2.0, and 8.0 elem/deg, respectively. Profiles are mirror-symmetric about their midpoint, and element positions have not

been jittered. (B) Distribution of Fourier energy (white) over space and spatial frequency for corresponding luminance profiles. Distributions of

Fourier energy were obtained by summing the squared output from bandpass quadrature-pair filters of variable scale and position. (C) Distribution

of non-Fourier energy over space and spatial frequency for corresponding luminance profiles. Non-Fourier energy were obtained exactly as for

Fourier energy except that the envelope of the luminance profiles, not the luminance profiles directly, served as the input signal.
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symmetry. The second possibility is that the coarse non-
Fourier content contained useful information, but that
observers discarded it and selected another spatial scale
for symmetry detection. In this section, we report an
ideal observer simulation demonstrating that poor jitter
resistance for our high-density stimuli reflects a scale-
selection property of the visual system rather than a lack
of useful information in the non-Fourier content of our
stimuli.

From an information-theory standpoint, the ideal
way to measure the mirror-symmetry information con-
tent of an image is closely approximated by computing
the cross-correlation between one half of the image and
the mirror reflection of the other half (Rainville &
Kingdom, 1999b; Tapiovaara, 1990). We implemented
our ideal observer in the MATLAB environment, gen-
erated exemplars of the fixed-size stimuli used in Ex-
periment 3 (fixed size––numerosity and density covary),
and applied the cross-correlation model to several spa-
tial scales of their non-Fourier energy content. To sim-
plify computations, we gave the ideal observer prior
knowledge of the location and orientation of the sym-
metry axis. Non-Fourier energy profiles were computed
in the same way as in Fig. 11, i.e., we (i) filtered each
stimulus with a pair of bandpass quadrature filters tuned
to peak stimulus spatial frequency, (ii) computed the
envelope as the square-root of the sum of squared odd
and even filter outputs, (iii) filtered the envelope at 12
spatial scales using a bank of bandpass quadrature-pair
filters, and finally (iv) computed non-Fourier energy
profiles for each spatial scale as the sum of squared
outputs of corresponding quadrature-pair filters. The
only difference with Fig. 11 is that stimuli were two-
dimensional (256� 256 pixels).

In our simulation, the ideal observer made symmetry
judgments on 500 symmetric/non-symmetric stimulus
pairs for each cell of a 3� 12� 5 matrix containing
three densities (0.5, 2.0, and 8.1 elem/deg), 12 peak
spatial frequencies (equal log-steps between 0.21 and
4.04 cpd), and five levels of positional jitter (0.0 and four
log-steps between 0.09 and 1.52 deg). For each image,
the ideal observer returned a single value on a con-
tinuum bounded between 0.0 (image is random) to
1.0 (image is perfectly symmetric). In total, symmetry
judgments were obtained for 188,000 images. Discrimi-
nability (expressed as d 0 values) was computed inde-
pendently for each cell of the 3� 12� 5 matrix by
comparing means and variances of the ideal observer’s
response to symmetric and non-symmetric stimuli
(Green & Swets, 1988).

Results from the simulation are plotted in Fig. 12
where the top, middle, and bottom graphs correspond to
stimulus densities of 0.5, 2.0, and 8.1 elem/deg, respec-
tively. Each graph plots discriminability (d 0) between
symmetric and non-symmetric stimuli as a function of
the center spatial frequency of the non-Fourier energy

band. Each curve corresponds to one of five levels of
positional jitter. The effect of increased jitter is to de-
crease the overall d 0.

Our simulation has produced two key results. First,
in the absence of positional jitter, our high-density
condition was more informative than the lower-density
ones. This can be judged from the maximum d 0 reached
for each density. Second, for all three density conditions,

Fig. 12. Results of ideal-observer simulation. Graphs plot discrimi-

nability (d 0) between symmetric and non-symmetric stimuli as a func-

tion of peak spatial frequency of bandpass non-Fourier mechanisms.

From top to bottom, graphs correspond to stimulus densities of 0.5,

2.0, and 8.1 elem/deg, respectively. Curves represent different levels of

positional jitter.
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the most informative spatial scale changes as a function
of spatial jitter. This effect is particularly pronounced in
the high-density condition (bottom graph) where the
distribution of symmetry information is highpass at low
jitter levels but lowpass at higher jitter levels. For the
three density levels tested in this simulation, the optimal
strategy is to use high frequencies in the absence of jitter
but lower frequencies as positional jitter increases.

Data from our study show that in the high-density
condition, human performance collapses even for small
amounts of positional jitter. Yet, our ideal observer re-
vealed that our high-density stimuli contained coarse
non-Fourier components which, in principle, human
observers could have used to overcome positional jitter.
Therefore, poor jitter resistance in the high-density
condition is a property of the visual system rather than a
lack of symmetry information in the coarse non-Fourier
content of our stimuli. Poor jitter resistance is also not
attributable to a lack of sensitivity to coarse non-Fou-
rier components since human observers were able to use
them in low-density stimuli. We conclude from this that,
instead of using the optimal strategy of adjusting spatial
resolution to resist positional jitter, human vision ap-
pears to select its scale of analysis purely on the basis of
stimulus density.

Our simulation shows that low spatial frequencies are
informative for the particular stimuli we have used, but
this does not hold true for all spatial-correspondence
problems. For instance, Dakin (1997) has shown that in
rotational Glass patterns, the spatial-correspondence
information resides predominantly at one spatial scale
for any one given stimulus density. If information in
naturalistic stimuli is concentrated at a spatial scale that
depends on local density, then a density-driven scale-
selection mechanism would not only achieve scale in-
variance but would also highlight important features
for further processing. Several computational model of
scale selection have already been proposed (e.g. Canny,
1983; Elder & Zucker, 1996; Hayes, 1989; Morrone &
Burr, 1997; Witkin, 1983) but to our knowledge, none of
these models uses density as a scale-selection criterion.
Models of perceived density have been also been pro-
posed (e.g. Allik & Tuulmets, 1991; Durgin & Huk,
1997; see Beaudot & Mullen, 2000 for review) but these
have yet to take scale selection into account.

9. Summary and conclusions

The present study has produced the following em-
pirical findings:

• Jitter resistance and IR size are not determined by
stimulus spatial frequency (Experiment 1).

• Jitter resistance and IR size are not determined by
stimulus numerosity (Experiment 2).

• Jitter resistance and IR size are not determined by
stimulus size (Experiment 3).

• Jitter resistance and IR size are inversely proportional
to stimulus density (i.e. 1=d) (Experiment 4).

• Jitter resistance and IR size include a constant num-
ber of texture elements (all experiments).

In the present study, we have shown that jitter resis-
tance and the IR for mirror symmetry are scale invariant
because the visual system is able to discard the effects
of viewing distance and transform information from a
retino-centric to an object-centric frame of reference.
The main contribution from this paper, however, is the
demonstration that stimulus density, not stimulus spatial
frequency, numerosity, or size, is used by the visual
system to implement scale invariance. An analysis of
the scale-space distribution of Fourier and non-Fourier
energy, combined with an ideal-observer simulation,
revealed that human performance is limited not by
stimulus physics but by a neural scale-selection mecha-
nism that uses density as a criterion.
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