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Comparison of sensitivity to color changes in
natural and phase-scrambled scenes
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Traditionally, thresholds for detecting photometric changes have been measured by using stimuli such as disks
or gratings and accounted for in terms of relatively low-level mechanisms in the visual pathway. Therefore one
might not expect the higher-order structures that characterize natural scenes to influence thresholds for de-
tecting uniform photometric changes. We compared thresholds for detecting uniform photometric changes for
natural and phase-scrambled versions of images of natural scenes. The chromaticity and luminance of every
pixel was represented as a vector in a modified version of the MacLeod–Boynton color space and was trans-
lated, rotated, or compressed within that color space. Thresholds for all types of transformation were signifi-
cantly lower in the raw compared with phase-scrambled scenes, and we attribute this to the influence of
higher-order structure. © 2008 Optical Society of America
OCIS codes: 330.0330, 330.1720.
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. INTRODUCTION
he behavioral study of color vision has traditionally em-
loyed simple stimuli such as patches, gratings, and ga-
ors. Only recently has color vision begun to be studied by
sing images of natural scenes (e.g., [1–3]). Although
atural scenes are complex stimuli, and the data obtained
rom them often difficult to interpret, they nevertheless
ffer a unique opportunity to examine the ways in which
he visual environment most commonly experienced is
pecial for color vision. In this communication, we con-
ider whether the unique structure of natural scenes in-
uences our ability to detect uniform changes to their lu-
inance and chromaticity.
The “structure” of an image generally refers to the spa-

iotemporal relations between points in the image. Al-
hough the unique structure of natural images is partly a
onsequence of their 1/ f-shaped Fourier amplitude spec-
ra [3,4], most of the visible structure of natural scenes
ies in their phase spectra, as evidenced by the fact that if
ne swaps the amplitude and the phase spectra of two dif-
erent images it is the phase spectra that carries the rec-
gnizable image structure [5]. Furthermore, the chro-
atic and luminance layers of a given scene have closely

elated phase spectra, because chromatic and luminance
hanges tend to co-occur at most object boundaries [6–11].
herefore, the method that naturally lends itself to test-

ng whether the particular structure of natural scenes in-
uences the detection of uniform luminance and chro-
atic changes applied to them is to compare detection

erformance between raw and phase-scrambled versions
f the scenes. But why might this be interesting?

Hubel and Wiesel [12,13] were the first to find neurons
n the primary visual cortex of mammals that operated in
quasilinear fashion, which they termed simple cells (lin-

arity implies that one can predict the response of the
1084-7529/08/030676-9/$15.00 © 2
euron to any stimulus once its response to spots or bars
rojected onto its excitatory and inhibitory receptive field
ubregions is known). The evidence for quasilinear neu-
ons in the primary visual cortex was complemented by
sychophysical studies suggesting that narrowband lin-
ar filters mediated the detection of luminance (e.g.,
14,15]), and chromatic [16,17] patterns. In addition, evi-
ence suggests that the luminance and chromatic layers
f mixed color-luminance patterns are detected indepen-
ently [16,18–22] and that any influence they have on
ach other is not dependent on their spatial phase rela-
ions [21,23,24]. Therefore under the most simplistic
odel of image discrimination, in which we assume that

he image is transduced by an array of linear filters, dis-
riminability would be proportional to the average
squared) difference in the responses of the array of filters
o the discriminand pair. This average difference will be
naffected by the higher-order structure of the stimulus,
ecause stimulus energy is determined by the amplitude,
ot phase spectrum. Therefore under the simple linear
odel, we would not expect any difference in the detect-

bility of uniform luminance–chromatic changes applied
o raw and phase-scrambled versions of natural scene
mages.

Mounting evidence, however, suggests that many, if not
ost, neurons in the visual cortex are not linear. For ex-

mple, stimuli falling in regions outside the classical re-
eptive fields of many neurons in V1 can dramatically af-
ect their responses provided the neuron is already active
25–34]. Such contextual modulation is believed to be im-
ortant for figure–ground segregation [35–37] and reflects
general principle that the visual system is organized to

ode the useful information in the visual environment in
n optimally efficient manner [38–45]. The evidence for
onlinear influences from outside the classical receptive
008 Optical Society of America
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elds of early stage visual neurons might lead us to ex-
ect a difference in the detectability of uniform
uminance–chromatic changes applied to raw versus
hase-scrambled natural scenes. But in which direction?
The above argument for optimality might lead to the

rediction that it should be easier to detect uniform
uminance–chromatic changes in raw compared with
hase-scrambled images of natural scenes. However,
ther considerations lead to the opposite prediction. One
f the important tasks for vision is to determine the light-
esses and colors of objects in spite of changes to the in-
ensive and spectral content of illumination, processes
hat are termed, respectively, lightness and color con-
tancy [46] (for reviews see [47,48]). Discounting changes
n illumination might result in insensitivity to changes in
llumination [49,50]. Given that changes in illumination
end to produce spatially uniform changes in
hromaticity–luminance, we might therefore expect the
isual system to be relatively insensitive to uniform
hanges in luminance–chromaticity applied to natural
cene images. Indeed, it has been suggested that the vi-
ual system is relatively insensitive to all types of natural
cene transformation that are involved in perceptual in-
ariance, for example, affine geometric transformations
uch as image scaling, rotation, and translation, in addi-
ion to uniform photometric transformations [51]. Since
elative insensitivity to uniform photometric transforma-
ions might be observed only in images of natural scenes,
he above argument leads to the prediction that we will be
ess sensitive to uniform color–luminance changes applied
o raw, compared with phase-scrambled images of natural
cenes.

It does not necessarily follow, however, that discounting
he illuminant in order to determine object color renders
he system insensitive to the illuminant. We are sensitive
o nonuniform illumination, such as shadows, shading,
nd specular reflections, and evidence continues to accrue
hat we are also sensitive to changes in uniform illumina-
ion [52–55], precisely because uniform illumination
hanges can be useful for helping determine object color
48,49,56,57]. On these grounds we would expect sensitiv-
ty to be higher for raw compared with phase-scrambled
atural scenes.
In summary, different considerations lead to three dif-

erent predictions as to the relative sensitivity of observ-
rs to uniform color–luminance changes applied to raw
nd phase-scrambled natural scenes: less sensitive,
qually sensitive, and more sensitive.

In order to compare the various types of luminance–
hromatic transformation, we have measured thresholds
efined in terms of a simple and intuitively appealing
etric of image distance: the Euclidean distance, or L2
orm. If the images are trilayered, RGB colored images,
s in Fig. 1, E can be calculated by using the following for-
ula:

E =��
n=1

N

�
i=1

3

�pni − qni�2

3N
, �1�

here pni and qni are the intensities of the corresponding
ixels in the two images, with i the image layer (i=1:3�
,G,B), n the pixel (i.e., with a unique x ,y coordinate),
nd N the number of pixels per image. Euclidean distance
as the important property that it defines a straightfor-
ard measure of the distance between two images and
rovides the same answer irrespective of the orthonormal
asis used to represent the images, e.g., pixels, Fourier,
aar, etc. [58]. Euclidean distance has been previously

mployed to compare sensitivities to a variety of transfor-
ations applied to natural scenes [59]. It is important to

tate at the outset, however, that we are not arguing that
uclidean distance is the proper perceptual metric.
ather, we argue that E is a relatively neutral metric,
roviding a useful measure for comparing the relative
ensitivities to the different types of color–luminance
ransformation shown in Fig. 1.

According to the simple linear model described above,
hreshold E’s would be expected to be the same for raw
nd phase-scrambled scenes. On the other hand, if we ad-
ere to the idea suggested by Kingdom et al. [59], namely,
hat we are relatively insensitive to those transforma-
ions that are involved in perceptual invariance, and add
he caveat that the relative insensitivity will be most pro-
ounced in raw scenes, then we would predict higher
hreshold E’s for the raw compared with phase-scrambled
cenes. Finally, on the grounds that the visual system has
volved specialized mechanisms to detect changes in
atural scene illumination, then we predict that thresh-
ld E’s for uniform color–luminance changes will be lower
n raw compared with phase-scrambled images scenes.

In the experiments described below, pixel values were
epresented as points in a modified version of the
acleod–Boynton color space (as suggested by Ruderman

t al. [7]), which consists of a luminance and two chro-
atic axes, known as “red–green” and “blue–yellow.” The

ransformations applied to the color space were transla-
ion, rotation, and compression.

. METHODS
. Equipment and Calibration
he scenes were photographed with a Nikon CoolPix-
500 digital camera and displayed on a Sony FD Trinitron
7 in., GDM F-500 using the VSG graphics board (Cam-
ridge Research Systems) housed in an 1800 MHz PC
omputer. The monitor RGB phosphors were gamma cor-
ected after calibration using an optical photometer
Cambridge Research Systems). The spectral emission
unctions of the three phosphors were measured by using
n Optikon SpectroScan® PR 645 spectrophotometer, with
he monitor screen filled with red, green, or blue, in the
ange 400–700 nm at 10 nm intervals. Monitor resolution
as 640�480 with a refresh rate of 100 MHz. Matlab ver-

ion 7 was used for all image processing tasks.
The cameras were calibrated as follows. Each one of a

et of gray Munsell papers was illuminated by an incan-
escent light with a constant-DC power and photo-
raphed. Additionally, the luminance of the light reflected
rom each paper was measured with a Topcon SR-1 spec-
roradiometer. The average R, G, and B pixel values were
lotted against the corresponding measured luminance
nd fitted with the following function: L=a�bs+1�, where
is luminance, s is the pixel level value obtained for each
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f the camera sensors (R, G, and B), and b is a constant
hat determines the slope of the curve. In addition, a
hite target was photographed through a series of nar-

owband optical interference filters from 400 to 700 nm at
0 nm intervals. Each R, G, and B value was recorded,
amma corrected, and used to construct a spectral sensi-
ivity function for each sensor, which was then normal-
zed to produce equal responses of to a flat-spectrum light.

. Images
he linearized camera RGBs were mapped onto linear-

zed monitor RGBs by using a 3�3 linear transformation
atrix. The coefficients in the matrix were device specific

Fig. 1. Different transf
nd were chosen to produce as faithful a reproduction of
he image colors as possible, using a method described in
etail elsewhere ([60]).
Fifty everyday scenes, representing a range of natural

nvironments (forests, mountains, flowers, and fruits)
nd urban scenes (buildings, traffic signs, man-made ob-
ects), photographed under a variety of different illumina-
ion conditions (sunny and cloudy) and at a variety of dis-
ances �0.5–1000 m�, were taken from the McGill
alibrated Color Image database [59]. The images were
hotographed by the camera (see above) and stored as un-
ompressed Tagged Image File Format (TIFF) files with
esolution 1920�2560 pixels and color depth of 24 bits
256 levels for each R, G, and B image). The camera’s

ons on a sample image.
ormati
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mallest aperture setting (f 7.4) was chosen to capture the
mages with minimum within-image differences in focus.
hen, the images were resized to 147�147 pixels wide by
sing a nearest-neighbor interpolation algorithm and
hen converted to bitmap file format with 24 bit depth.
ach image subtended 9�9 cm (5.7° of visual angle) on

he monitor at the viewing distance of 90 cm.

. Stimulus Procedures
hase-scrambled images. Phase randomization was ap-
lied to the phase spectra of the images using a discrete
ourier transform. The phase and amplitude spectra were
alculated using the following formulas:

Amplitude = ��Fr��x,�y�2 + Fi��x,�y�2�,

Phase = arctan�Fi��x,�y�

Fr��x,�y�	 ,

here �x and �y are frequency variables and Fr and Fi are

Fig. 2. A, Three sample raw images; B, phase scrambled; C
he real and imaginary parts of each Fourier frequency
omponent. A random number between −� and +� was
ssigned to each Fourier component phase in all three im-
ge layers. An inverse Fourier transform then returned
he phase-scrambled image (Fig. 2).

Conversion of stimuli from RGB to LMS color space.
sing the spectral sensitivities of the camera sensors and

he sensitivities of the L (long-), M (middle-) and S-
short-wavelength-sensitive) cones provided by Smith and
okorny [61], a conventional 3�3 linear matrix was used

o convert the RGB camera values to LMS cone excita-
ions [59].

Color space and post-receptoral layers. A modified ver-
ion of the Ruderman color space was used to model the
hree postreceptoral layer images [7]. Cone contrasts for
ach pixel were defined as

LC = log L − log L, MC = log M − log M,

SC = log S − log S, �2�

-aligned phase-scrambled; D, reverse; E, raw color transfer.
, phase
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here log L, log M, and log S are log pixel cone excitations
nd log L, log M and log S log pixel cone excitations aver-
ged across the image. The postreceptoral responses to
ach pixel were defined as

l̂ = �rL̂C + M̂C�, �̂ = �L̂C + M̂C − 2ŜC�, �̂ = �L̂C − M̂C�,

�3�

here l̂,�̂ , �̂ are the luminance, blue–yellow, and red–
reen axes, respectively. r is a parameter that determines
he relative L and log L cone contrast inputs to the lumi-
ance mechanism and varies between observers. We de-
ermined r as described below.

Image transformations. We applied three transforma-
ions to the color space: compression, translation, and ro-
ation. All transformations were affine; that is, all points
ying on a line remained on the line after the transforma-
ion, and the ratios of distances between points remained
he same [62]. Six levels of each transformation, i.e., six
evels of E, were employed, and these were determined
hrough pilot experiments. The minimum E was chosen to
roduce performance just above chance level, and the
aximum E was chosen to produce performance above

0%. The six values of E were logarithmically spaced.

. Psychophysical Procedures
caling of axes. To compare transformations across differ-
nt axes of color space, the axes need to be equated, and
or this study we equated them in terms of perceived con-
rast. Subjects adjusted the contrast of the luminance and
ed–green layers of five randomly selected images to
atch the apparent contrast of the blue–yellow layers

the blue–yellow layers had the lowest perceived contrast,
o these were chosen as the baseline). The average scaling
actors that were found to equate the three layers for per-
eived contrast were then applied to all images for each
ubject separately.

Isoluminant setting. Isoluminance was determined by
sing the method of minimum distinct border [63]. Sub-

ects changed the ratio of L to M in the red–green layers
f five randomly selected natural images until the image
ppeared to have least sharp borders and appeared shim-
ery. This ratio is the parameter r in the equation above.
Forced-choice design. On each trial, four images were

hown to the subject. Each set of four consisted of three
riginal and one transformed image. The four images
ere presented in two successive pairs in a conventional

wo-interval-forced-choice procedure. Each pair of images
as presented side-by-side on the screen with a center-to-

enter separation of 13.5 cm, or 8.6°. The transformed im-
ge was randomly presented in either the first pair or the
econd pair, and either on the left or the right side of the
air. The interstimulus interval was 200 ms, and each im-
ge was displayed for 250 ms. The subject’s task was to
dentify the interval in which the pair appeared different.

tone provided feedback for an incorrect response. For
ach session, the transformation and layer type was fixed,
hile the sequence of images was selected randomly.
here were 150 trials per session, and two sessions per
ondition, giving a total of 300 trials per condition. All
hree subjects had normal or corrected-to-normal vision,
nd color vision was tested by using the Ishihara plates.
Analysis. On every trial the Euclidean distance E of the
ransformed image was recorded along with the subject’s
esponse (correct or incorrect). Although there were six
iscreet levels for each transformation, the computed val-
es of E for each level of a given transformation varied
ccording to image. In order to fit psychometric functions
o the data, the E’s were divided into six bins for each
ransformation. The first bin was set to have a minimum
f zero, while the last, sixth bin was set to have a maxi-
um equal to the maximum E found for that transforma-

ion. The first bin divider was determined iteratively to be
hat value of E that minimized the between-bin variance
n the number of trials when the remaining bin dividers
ere logarithmically spaced. This method ensured that

he trials were distributed as evenly as possible between
ins while obeying the constraint that all bins except the
rst bin were logarithmically spaced (E’s in the first bin
egan at zero). After the E’s were binned, the mean
og�E�, correct proportion, and number of trials were cal-
ulated for each bin.

Psychometric functions were fitted by using psignifit
ersion 2.5.6, which uses the maximum-likelihood
ethod described by Wichmann and Hill [64].

. RESULTS
xample psychometric functions for translation of the
lue–yellow layer, for both raw and phase-scrambled
cenes, are shown in Fig. 3. Each plot gives the overall
roportion correct trials as a function of log�E�. The
hreshold was calculated at the 75% correct level (see Sec-
ion 2).

Thresholds for all four types of transformation and for
oth raw and phase-scrambled images are shown in Fig.
. As can be seen, thresholds for the phase-scrambled im-
ges are systematically higher than for the raw images.
veraged across transformation and subjects, threshold

og�E� values are 1.1 for the raw and 1.17 for the phase-
crambled images, a 17% difference. A four-way within-
ubject analysis of variance with factors type of image
raw versus phase-scrambled), layer (luminance, red–
reen, blue–yellow), transformation (translation, positive
nd negative; rotation, clockwise and counterclockwise;
nd compression), and subjects was conducted. The differ-
nce between raw and phase-scrambled scenes was sig-
ificant at the p=0.05 level (F=19.69, df=1, p=0.047). Al-
hough the transformations involving the luminance and
lue–yellow axes produced on average higher thresholds
han those involving the red–green layer, there was no
ignificant effect of layer (Fig. 4).

. Changes to the Color Histogram
hase-aligned phase-scrambling method. In this experi-
ent we ask whether the higher sensitivity that we found

or uniform color–luminance changes in raw compared
ith phase-scrambled images of natural scenes is due to

he changes in the color histogram that occur when im-
ges are phase scrambled. As can be seen from Fig. 1, our
ethod of phase scrambling introduces new colors. In this

xperiment, as suggested by Prins [65], the same phase
hift is applied to each image layer, thus preserving the
hase relations among layers and as a consequence pre-
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erving the color histogram more faithfully, as can be seen
rom Fig. 1. We measured the thresholds for two transfor-
ations, translation and rotation, and two layers, lumi-
ance and red–green, in two subjects. The results are
hown in Fig. 5. A paired one-tailed t test shows that the
ifference in thresholds is again significant
t�7�=2.45, p=0.042]. This suggests that changes to the
olor histogram introduced by phase scrambling is not the

ig. 3. Comparison of percentage correct in raw and phase-scra
n left, and compression of luminance layer on right.

ig. 4. Thresholds for different types of transformation–layers i
ion; Tra, translation; TrN, translation negative).
ain reason why sensitivity to uniform colors–luminance
s higher in raw compared with phase-scrambled natural
cenes.

Color transfer method. The color histogram resulting
rom the above method of phase scrambling is still
lightly different from that of the original scene. There-
ore we tested another method to equalize the histogram,
uggested by Reinhard et al. [66]. In this method the color

scenes in two transformations, translation in blue–yellow layer

e subjects (Com, compression; RoN, rotation negative; Rot, rota-
mbled
n thre
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ontent of the raw images was transferred to the phase-
crambled images and vice versa, as follows. First, for
ach image, we computed the standard deviation (SD) of
he pixel histogram of each layer in the Ruderman color
pace. Then, we computed the ratio of SDs of the source
raw or phase scrambled) to the target (phase scrambled
r raw) for each layer. Finally, each pixel in each layer of
he Ruderman color space was multiplied by the SD ratio,
nd the resulting new values converted back to the RGB
olor space (Fig. 1). The new target images had colors
imilar to the source images. Thresholds were measured
or both the new raw and new phase-scrambled images
or translation and rotation in the luminance and red–
reen layers. The results are shown in Fig. 5. The differ-
nces between the raw and phase-scrambled images in
oth original and color-transfer manipulations were again
ignificant [original t�7�=2.88, p=0.02; color transfer,
�7�=2.85, p=0.02]. A paired two-tailed t test on the dif-
erence of the phase-scrambled and the color-transfer ver-
ion of the same phase-scrambled image did not show any
ignificant difference [t�7�=0.76, p=0.47]; neither did
omparison of original and new raw images [t�7�=0.656,
=0.53].

. Structure versus Familiarity
n this experiment we ask whether the higher sensitivity
o uniform color–luminance in raw compared with phase-
crambled images of natural scenes is due to the presence
f higher-order structure or due to the presence of famil-
ar colors and luminances. To test between these two pos-
ibilities, we reversed the colors and luminances of the
mages in the Ruderman color space (Fig. 2). Thus a pixel
hose color was at point l̂, �̂, �̂ in the color space would be

eallocated the color −l̂, −�̂, −�̂. The resulting images had
he same structure as natural scenes, but with opposite
olors and luminances. As with the previous experiment,
hresholds were measured for four transformation–layer
ombinations: translation and rotation, for the luminance
nd red–green layers. The color-reversed thresholds in
eneral lay between the raw and the phase-scrambled
hresholds. A student’s t test revealed a significant differ-
nce between the color-reversed and phase-scrambled
hresholds (mean reverse 0.06, mean phase 0.11, t (re-

ig. 5. Comparison of thresholds for all six types of images in
ne subject.
erse versus phase)�2.83, p (reverse versus phase)
0.01), but not between the raw and color-reversed

hresholds (mean real 0.05, mean reverse 0.06, t(natural
ersus reverse)�0.351, p (natural versus reverse)
0.729). These results suggest that higher-order struc-

ure rather than color–luminance familiarity is the main
eason why sensitivity to uniform colors–luminance is
igher in raw compared with phase-scrambled natural
cenes (Fig. 5).

. DISCUSSION
ensitivity for detecting uniform color–luminance
hanges was higher for raw compared with phase-
crambled images of natural scenes. As argued in Section
, this result is unexpected from the point of view of lin-
ar systems analysis, which assumes that simple color–
uminance changes are detected by arrays of linear filters
n the early visual cortex. Familiarity of object colors and
uminances does not appear to be the main factor respon-
ible for the superior sensitivity in raw versus phase-
crambled images, nor do the changes to the color histo-
ram that occur when a raw scene is phase scrambled.
ather, the results support the idea that when processing
niform photometric changes, the visual system is opti-
ized for the particular structural characteristics of
atural scenes.
What is it about the higher-order structure that pro-

uces higher sensitivity to uniform photometric transfor-
ations? Raw images of natural scenes contain regions of
niform color and luminance not found in their phase-
crambled counterparts, and perhaps it is this that under-
ies the higher sensitivity. The size of uniform areas is in-
ersely related to the degree of image randomness, and
ne measure of image randomness is entropy—the higher
he entropy the greater the randomness [40,67,68]. For
ur images we used the Matlab function of entropy, de-
ned as −sum�p . * log�p��, where p is the histogram
ounts of pixels of the image. Using this measure, entropy
or the luminance layer was greater for phase-scrambled
ompared with raw scenes (4.82 and 3.75, respectively).
o test the idea that entropy might be the correlate of per-
ormance we correlated the entropy of each image with its
ssociated number of correct responses. A negative corre-
ation between image entropy and number correct might
e expected. The strongest negative correlations were
ound for the luminance transformations, for both raw
R=−0.47� and phase-scrambled �R=−0.45� scenes. For
he blue–yellow transformations, a negative correlation
as found for the raw �R=−0.42� but not phase-scrambled

R=0.47� scenes, and for the red–green layers a negative
orrelation was found for phase-scrambled �R=−0.32� but
ot raw �R=0.17� scenes. However, the conventional mea-
ure of entropy is probably not the best measure of patchi-
ess, since it does not explicitly take into account the
elative positions of pixel values (if the pixels of an image
re randomly re-allocated, the measure entropy does not
hange). Thus while entropy appears to capture the dif-
erence in performance between raw and phase-
crambled scenes, it does not consistently predict perfor-
ance on an image-by-image basis for the various classes

f image transformation.
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Kingdom et al. [51] have shown that transformations
pplied to natural scenes that are involved in perceptual
nvariance are less easily detected than other types of
ransformation. They found that affine geometric trans-
ormations, such as image rotation, scaling, and transla-
ion, applied to images of natural scenes were an order of
agnitude more difficult to detect than the addition of

andom noise. Thresholds for detecting uniform photo-
etric changes, such as brightening or reducing contrast,
hich are similar to the uniform color–luminance

hanges employed here, fell in between the affine-
eometric and added-noise thresholds. If the relative in-
ensitivity to transformations involved in perceptual in-
ariance manifest itself only in the context of real scenes,
e would expect sensitivity to the phase-scrambled

cenes to be higher, not lower than the raw images. The
act that the opposite was found suggests that perceptual
nvariance is dependent on the type of transformation ap-
lied to the image, not on the type of image. If so, we
ould predict a similar ordering of thresholds (geometric
photometric�added noise) applied to phase-scrambled

mages of natural scenes, even though overall thresholds
ould be higher than for raw scenes. We are currently

esting this prediction.

. CONCLUSION
he higher-order structural properties of natural scenes

nfluences our ability to detect uniform changes in their
olor and luminance composition. The patchiness of natu-
al scenes is the most likely reason why thresholds for de-
ecting uniform color–luminance changes is lower for
atural compared with phase-scrambled scenes.
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