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In many natural scenes, shadows and shading, which are primarily luminance-defined features, proliferate.
Hence one might expect that the chromatic variations of natural scenes, which more faithfully represent the
layout of object surfaces, will contain relatively fewer and larger uniform regions than the luminance varia-
tions, i.e., will be more “patchy.” This idea was tested using images of natural scenes that were decomposed
into chromatic and luminance layers modeled as the responses of the red—green, blue-yellow, and luminance
channels of the human visual system. Patchiness was defined as the portion of pixels falling within a + thresh-
old in the bandpass-filtered image, averaged across multiple filter scales. The red—green layers were found to
be the most patchy, followed by the blue—yellow layers, with the luminance layers the least patchy. The corre-
lation between image-layer patchiness and the slope of the Fourier amplitude spectrum was small and nega-
tive for all layers, the maximum value being for red—green (-0.48). We conclude that the chromatic layers of
natural scenes contain more uniform areas than the luminance layers and that this is unpredicted by the slope
of the Fourier amplitude spectrum. © 2008 Optical Society of America

OCIS codes: 330.0330, 330.1720.

1. INTRODUCTION

Knowledge of the physical structure of the natural visual
environment guides our study of human vision [1]. It has
been known for some time that the spatial structure of
the chromatic and luminance content of natural scenes is
different [2] and more recently that the differences have
manifest physiological [3] and behavioral consequences
[4]. In this communication we consider whether the chro-
matic and luminance layers of natural scenes differ in the
degree to which they form regions with relatively uniform
chromaticities or luminances. In other words, we consider
whether the color and luminance layers of natural scenes
differ in the degree to which they are structurally sparse
or “patchy.” We use the term “patchiness” to describe the
proportion of the image that contains uniform areas—the
higher the patchiness, the larger and/or more numerous
the uniform areas. An alternative term that emphasizes
the proportion of pixels in the image comprising edges
rather than uniform areas is “structural sparseness” [5].
Either term would suffice here, but we prefer patchiness,
as it best captures the idea of the amount of uniform re-
gions.

A much-vaunted characteristic of natural scenes is the
shape of their Fourier amplitude spectra. In natural
scenes, Fourier amplitude is inversely proportional to
spatial frequency f, or, more precisely, proportional to
1/f", where the exponent n, which defines the (negative)
slope of the spectrum, varies slightly between scenes but
is on average close to unity [6,7]. Important for the
present discussion is that the exponent n has been shown
to be similar for the chromatic and luminance layers of
natural scenes [8,9]. The 1/f characteristic embodies the
fact that energy is relatively strong at low spatial fre-
quencies, consistent with the presence of relatively large
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aggregates of pixels with similar luminances/
chromaticities. The slightly steeper slopes in the ampli-
tude spectra of some scenes (n>1) has been explained by
the presence of particularly large aggregates of similar
pixel values, for example, from a large evenly colored ob-
ject [9]. The finding that the spectral slopes of the lumi-
nance and chromatic content of natural scenes are similar
might lead one to suppose that the luminance and chro-
matic layers are equally patchy. However, the presence of
uniform regions bounded by edges, a defining feature of
natural scenes, is primarily a higher-order structural
property. The simplest evidence for this is that phase
scrambling a natural scene, which has no affect on the
amplitude spectrum, destroys any uniform regions. Thus
a similarity in spectral slope is not necessarily an indica-
tor of a similarity in patchiness.

Indeed, other considerations lead one to suppose that
the chromatic and luminance layers of natural scenes
might differ in patchiness. Chromatic differences tend to
arise from differences in material composition, such as
from differently colored objects and surfaces. Luminance
differences, on the other hand, arise not only from mate-
rial differences, i.e., from different object/surface reflec-
tances, but from inhomogenous illumination, such as
shadows and shading (sometimes termed “attached”
shadows). Because shadows and shading are primarily
luminance-defined features, and because they tend to pro-
liferate in natural scenes [2,10,11], it might be expected
that the chromatic layers of natural scenes would be more
patchy than their luminance layers. The aim of this com-
munication is to test this prediction.

In daylight vision the image is first transduced by three
photoreceptors: the long- (L-), medium- (M-), and short-
(S-) wavelength-sensitive cones. The cone responses are
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then combined into three channels, one luminance sensi-
tive and two chromatically sensitive. The luminance-
sensitive channel sums the outputs of the L and M cones
and is known as the L+M channel. One chromatically
sensitive channel takes the difference between the out-
puts of the L and M cones and is known as the L—M chan-
nel, while the other chromatically sensitive channel takes
the difference between the sum of the L- and M-cone re-
sponses and the S-cone response and is known as the S
—(L+M) channel. Because these channels are very often
(though strictly speaking incorrectly) referred to as the
luminance, red—green, and blue—yellow channels, we will
adopt these terms from now on.

In this communication the patchiness indices of the
modeled responses of the three postreceptoral channels to
natural scenes are compared. The reason for basing the
comparison on the modeled postreceptoral channel re-
sponses is that some previous studies have noted that the
red—green and blue-yellow layers of natural scenes, while
in the main insensitive to shadows and shading, are nev-
ertheless differentially sensitive to them, with the blue—
yellow channel the more sensitive [9,12]. Scenes with
green foliage are full of shadows, and these seem to shift
the wavelength spectrum slightly toward the yellow end
of the blue—yellow channel continuum [12]. On the other
hand, the deep shadows seen in open-lit sunny days tend
to be bluish, because whereas the areas outside the shad-
ows are bathed in a mixture of yellow sunlight and blue
skylight, the shadows tend to be bathed mainly in blue
skylight [13]. These considerations lead to the testable
prediction that the blue—yellow channel response to natu-
ral scenes will be less patchy than the red—green channel
response but more patchy than the luminance channel re-
sponse.

2. MEASUREMENT OF PATCHINESS

A higher-order statistic that has been suggested to cap-
ture natural scene patchiness is the kurtosis of the pixel
histogram [14,15]. Kurtosis is a measure of the peaked-
ness of a distribution and is defined as u*/o*, where u is
the mean pixel value and o the standard deviation of
pixel values. Hence a possible measure of patchiness
would be the kurtoses of the raw pixel histograms of the
red—green, blue-yellow, and luminance channel re-
sponses. However, there are problems with kurtosis as a
measure of patchiness. Suppose one has a scene that con-
tains, among other things, a large uniform red region and
a large uniform green region, i.e., is relatively patchy
along the red—green dimension. This would produce peaks
in the red—green pixel histogram on either side of the
mean and a low value of kurtosis. Figure 1 shows three
images, their red—green layers (rendered as gray-level im-
ages), and the histograms and kurtoses of the layers. Two
of the three red—green layers have very low kurtosis, de-
spite having large uniform areas of flowers and leaves.
The intuitive solution to this problem is to measure kur-
tosis not in the raw but in the bandpass-filtered version of
the image [15], as this would shift any peaks in the his-
togram arising from uniform areas onto the mean, hence
revealing any high patchiness via high kurtosis. In our
sample images we found that the kurtosis of the filtered
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image is a reasonable measure of patchiness, but still not
the best. Why?

Kurtosis is very sensitive to noise, in that the presence
of low-amplitude noise around the mean reduces kurtosis.
Our images are contaminated by noise from the photo-
graphic process. Photographic noise is Gaussian, with an
amplitude that increases with the brightness of the scene
[16]. Although the signal and noise levels may be similar
for the R (red), G (green), and B (blue) camera responses,
this may not be the case for the three postreceptoral chan-
nel images derived from them. Remember that the lumi-
nance channel sums cone responses, the red—green chan-
nel subtracts cone responses, and the blue—yellow
channel both sums and subtracts cone responses. While
the cone signals will add or subtract, the noise amplitude
levels will not. The amplitude of the noise in the postre-
ceptoral layers will depend not only on whether the cone
images are added or subtracted but also on the degree to
which the noise is correlated between cone images. For
example, suppose the noise in the L and M images was
100% correlated. Subtracting the M- from the L-cone im-
age to produce the red—green channel image would elimi-
nate the noise, whereas adding the cone images to pro-
duce the luminance channel image would double the noise
amplitude. On the other hand, if the noise was completely
uncorrelated, noise amplitude would increase by a factor
of \s’§, irrespective of whether the L- and M-cone images
were added or subtracted. Using our method, the problem
is even more complicated. The color space we have em-
ployed, for reasons given later, is based on a log (logarith-
mic) transform of cone signals. The transform subtracts
the average log value of cone signals across the whole im-
age from each log pixel cone value in order to center the
cone signals around a midpoint of zero [17]. In an image
with a wide signal variation, a log transform can decrease
the signal-to-noise ratio.

In our set of natural images the ratios of the average
absolute magnitudes of the luminance, red—green, and
blue—yellow signals were 1.0, 0.11, and 0.88 respectively.
(These values are measured in the logarithmic color space
described later and are unitless.) Taken together with the
argument above that the signal-to-noise ratios resulting
from photographic noise are dependent on both the type
of layer and the scene content, it is likely that the signal-
to-noise ratios will vary considerably among the three
postreceptoral layers and render kurtosis a bad estimator
of patchiness. To examine this possibility, the following
simulation was performed. A test image consisting of two
halves separated by an edge was allocated red-green,
blue-yellow, and luminance contrasts with relative mag-
nitudes equal to those given above for the natural image
set. The image was then converted into RGB (see Section
3 for details), and uncorrelated Gaussian noise, with o
(standard deviation) multiples of 1(x=1,2,4,8) was
added to each plane [N(0,0?) where N is the normal dis-
tribution, O is the mean, and ¢=1,2,4,8]. The RGB im-
ages were then converted back to the three postreceptoral
layers. The images were then filtered with a log-Gabor fil-
ter (see below) with a spatial frequency of 12 cycles per
degree (cpd) and kurtosis was measured for each layer.
With no noise added, the kurtosis was the same for all
three layers: 40.34. The noise-added results are shown in
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Fig. 2. Each point represents the average of five random
noise samples. As the figure shows, kurtosis falls with
noise o as expected, but more important, at a different
rate for the three layers (blue-yellow >red—green
>luminance). Therefore, assuming the simulation reflects
what happens with natural scene images, patchiness as
measured by kurtosis, even in bandpass-filtered images,
will differ among the three postreceptoral channel layers
solely because of the differential effects of photographic
noise. This suggests that kurtosis of the filtered image is
not a valid measure of patchiness when using different
postreceptoral channel images of natural scenes.

To minimize the impact of photographic noise on the es-
timate of patchiness, we employed a modified version of
the structural sparseness index developed by Hansen and
Hess [5]. In their method, the images were first filtered
using log-Gabor filters in 3 spatial frequencies and 12 ori-
entations. The portion of pixels that fell within £1.5 ¢
from the mean of each filtered image was calculated, and
the average value across filter scales was the index of
sparseness. The important difference in our method is

Pixel Values
Fig. 1. Measurement of kurtosis in the red—green layer of three natural scenes with different perceived patchiness (see text for details).

that we used a fixed threshold rather than one defined in
terms of the standard deviation (we also did not filter
across orientations and used four rather than three filter
scales—see below). A fixed threshold was employed for
two reasons. First, a fixed threshold is more robust to
noise. To demonstrate this, a similar simulation was per-
formed to the one described above. This time 30 bipartite
test stimuli were generated, each with red—green, blue—
yellow, and luminance contrasts randomly selected from
zero to the average values determined from the natural
image set. As in the previous simulation, the images were
converted into RGB, and normally distributed noise
added to each plane. This time the noise o was set to 10%
of the signal strength of each RGB plane. The images
were then converted back into postreceptoral channel im-
ages and filtered as described above. Patchiness was mea-
sured according to three indices; threshold based on 1.5 o
(as in Hansen and Hess [5]), a fixed threshold (£0.07; the
range of values in the filtered images varies between
+0.26 and +£1.12), and kurtosis. The formal statement of
the threshold based on the standard deviation is
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The effect of increasing noise levels
on measurement of kurtosis
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Fig. 2. Effect of noise in the RGB images on the measurement of
kurtosis in the three postreceptoral channel responses to a bipar-
tite field. Each point represents the average kurtosis for five
sample images with normally distributed noise.

FR(xi,yi) < +1. 5”"0’|FR(xi,yi) >-1.5%
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where Frp(x,y) is the thresholded filter response, Fr(x,y)
is the filtered response, and o is the standard deviation of
the pixel values in Fg(x,y). For the fixed threshold, it is

1 FR(xi,yi) < + 007\FR(xl,yl) >-0.07
Frlx;,y;) = 0

where the parameters are the same as above except that
the threshold is fixed. Kurtosis has been described earlier.

Because we used a filter that was range independent,
the noise-free images produced the same value of patchi-
ness for each of the 30X 3 image layers. These values
were 0.95, 0.94, and 40.34, respectively, for the three in-
dices of the fixed threshold, standard-deviation threshold,
and kurtosis. For the noise-added images, patchiness var-
ied both as a function of noise level and postreceptoral
layer, as shown in Table 1. A valid index of patchiness is
evidenced by a measure that is similar for all three lay-
ers, and Table 1 shows this is the case for both the
standard-deviation-based and fixed-threshold indices, but
not for kurtosis. A robust measure of patchiness is evi-
denced by a relatively low variance of the measure across
noise levels. We measured the standard deviation of each
patchiness index across 30 images. The relative standard
deviations of patchiness were 300, 3, and 1, for the kurto-

5

elsewhere
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sis, standard-deviation-based threshold, and fixed-
threshold indices, respectively. Hence the fixed-threshold
index appears to be the most robust to noise.

A potential problem with the use of a fixed threshold
rather than one based on the standard deviation is the
different absolute magnitudes of the responses in the
red—green, blue—yellow, and luminance layers (see above),
which would normally result in the lowest estimate of
patchiness for the red-green layer. However, the log-
Gabor filters used here are range independent; that is,
the range of the input has no effect on the range of the
filter response. Instead, it is the relations among pixels
that determine the filter response. Put another way, if we
were to multiply an image by any number, the log-Gabor
filter response would be unchanged. This is why the mea-
sures of patchiness for the three layers in both simula-
tions described above are nearly identical. Log-Gabor
rather than Gabor filters were also employed because
they reset the dc level of the image to zero. Finally, it has
been suggested that the log-Gabor filter better represents
the responses of cortical cells than do Gabor filters
[18,19].

To estimate patchiness we combined individual esti-
mates of patchiness across four spatial scales. Why? Fine-
scale filters will signal the presence of both small and
large uniform areas, while coarse-scale filters will signal
only relatively large uniform areas. So one could argue
from this that only the finest-scale filters should be used.
However, the coarse filters are able to detect coarse-scale
edges, such as from shading and shadows, which would be
encoded as uniform areas by the finest-scale filter. There-
fore averaging across scales gives a better indication of
the overall patchiness of an image.

Figure 3 shows the resulting patchiness indices for syn-
thetic stimuli. The three postreceptoral layers have differ-
ent patch sizes, and this is reflected in their different
measures of patchiness, verifying that the patchiness in-
dex is directly correlated with the portion of image-layer
pixels that form uniform areas.

Figure 4 illustrates the sequence of stages involved in
our estimation of natural scene patchiness. The images
were first decomposed into luminance, red—green, and
blue-yellow images. Each layer was then filtered with iso-
tropic log-Gabor filters at four spatial scales. The filtered
images were then converted to binary images using an ar-
bitrary fixed threshold set to £0.07 from the mean. The
portion of pixels falling within the upper and lower

Table 1. Comparison of Three Methods, Kurtosis, Standard-Deviation Threshold and Fixed Threshold for
Estimating Patchiness, Using 30 Artificial Images with Added Noise®

Standard-Deviation

Kurtosis Threshold Fixed Threshold
Measure Luminance Red-Green Blue-Yellow Luminance Red-Green Blue—Yellow Luminance Red-Green Blue—Yellow
Mean 6.01 4.66 4.46 0.89 0.88 0.88 0.97 0.98 0.98
SD 3.44 2.24 1.72 0.02 0.02 0.02 0.006 0.006 0.007
Mean across 4.98 0.87 0.97
layers
SD across 2.64 0.020 0.009
layers

“SD, standard deviation.
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Original image
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Red-Green

Blue-Yellow

0.63

Luminance PI 0.52 0.63
Red-green PI 0.63 0.51 0.72
Blue-Yellow PI 0.72 0.72 0.56
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Fig. 3. Synthetic images and resulting measures of patchiness. PI, patchiness index.

threshold bounds was measured, and the index of patchi-
ness was calculated as the average of these values across
the four filter scales. Finally, as mentioned earlier, since
previous research has suggested that the slope of the Fou-
rier amplitude spectrum may be correlated with the
amount of uniform areas in the image [9], we correlated
the estimates of patchiness with the measured slopes of
the images’ Fourier amplitude spectra.

3. METHOD

A. Equipment and Calibration

The scenes were photographed with two Nikon CoolPix-
7500 digital cameras. Matlab version 7 was used for all
image processing tasks. The cameras were calibrated to
remove gamma nonlinearity as follows. Each one of a set
of gray Munsell papers was illuminated by an incandes-
cent light with a constant-dc power and photographed.
Additionally, the luminance of the light reflected from
each paper was measured with a Topcon SR-1 spectrora-
diometer. The average R, G, and B pixel values were plot-
ted against the corresponding measured luminance, and
fitted with the following function: L=a(b*+1), where L is
luminance, s is the pixel level value obtained for each of
the camera sensors (R, G, and B), and b is a constant that
determines the slope of the curve.

To measure the spectral sensitivity functions for the
three R, G, and B camera sensors, a white target was pho-
tographed through a series of narrowband optical inter-
ference filters from 400 to 700 nm at 10 nm intervals.
Each R, G, and B value was recorded, gamma corrected,
and used to construct a spectral sensitivity function for
each sensor, which was then normalized to produce equal
responses of a flat-spectrum light.

B. Images
From the McGill Calibrated Color Image Database [20],

we took 758 natural scenes, representing a range of natu-

ral environments (forests, mountains, flowers, fruits,
snow, and textures) and urban scenes (buildings, traffic
signs, and manmade objects), photographed under a vari-
ety of different illumination conditions (sunny and
cloudy) and at a variety of distances (0.5 m—1000 m). The
images were photographed by the camera (see above) and
stored in uncompressed Tagged Image File Format (TIFF)
files with a resolution of 1920 X 2560 pixels and a color
depth of 24 bits (256 levels for each R, G, and B image).
The camera’s smallest aperture setting (f7.4) was chosen
to capture the images with minimum within-image differ-
ences in focus. Then the images were resized and cropped
to 960 X 960 pixels wide using the nearest-neighbor inter-
polation algorithm.

C. Conversion of Stimuli from RGB to LMS Color Space
Using the spectral sensitivities of the camera sensors and
the sensitivities of the L, M, and S cones from Smith and
Pokorny [21], a conventional 3 X 3 linear matrix was used
to convert the RGB camera values to LMS cone excita-
tions [20]. The matrices for conversion from RGB to LMS
and vice versa were taken from the database website [20].

D. Color Space and Postreceptoral Channels

A modified version of the Ruderman color space was used
to model the three postreceptoral channels of human vi-
sion [17]. Cone contrasts for each pixel were defined as

Le=logL-logL, Mc=logM -logM,

Sc=logS -logS

where log L, log M, and log S are log pixel cone excitations
and the same notations with overbars are log pixel cone
excitations averaged across the image. The three postre-
ceptoral responses to each pixel were defined as
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Original Channel Filter #1 Filter #2 Filter #3 Filter #4 Index
Image responses (finest) (coarsest)

0.47

0.63

(a)

0.48

Fig. 4. Method for measuring patchiness. A sample image (a) with its luminance (b), red—green (c), and blue—yellow (d)
channel responses. Below each filtered image is shown the pixel histogram and below each histogram is shown the binarized image
after applying the fixed threshold. The index of patchiness on the right gives the average portion of light gray pixels in the four
binarized images.
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[=Le+Me), a=(Le+Mc-25¢0), B=Lc-E0),

where Z, a, and ,23 are the luminance, blue—yellow, and
red—green axes, respectively.

E. Image Processing
The log-Gabor filter in the Fourier domain is defined as

(R(ﬁ, @))2
log

peak

o1 2 ’
2 log
Fpeak

where f and 6 are the polar coordinates of any point, R is
the radius vector, F,;, is the central spatial frequency of
the log-Gaussian function, and o is the spatial frequency
bandwidth of the log-Gaussian function.

Four spatial frequencies (3, 6, 12, and 24 cpd at the
viewing distance of 1 m) were used (Fig. 4). The threshold
of £0.07 (the range of the images varied from +0.26 to
+1.12), although somewhat arbitrary, was chosen so that
patchiness ranged between 10% and 90% for all images.
This ensured that any differences in patchiness between
images and layers would not be masked by floor and ceil-
ing effects. The portion of pixels inside the + threshold
was measured. These portions were averaged over the
four spatial scales to give the estimate of patchiness, as
shown in Fig. 4. The spectral slope was measured using a
two-dimensional fast Fourier transform. After removing
the dc component, the slope was measured using linear
regression from the lowest spatial frequency (1 cpd) to the
Nyquist frequency (wavelength of 2 pixels) on a log—log
scale.

LG(f,0) = expy —

4. RESULTS

The mean values of patchiness for the luminance, red—
green, and blue—yellow layers across all images were
0.49+0.13, 0.71+0.08, and 0.65+0.13, respectively. The
averages at each filter scale are shown in Table 2, which
shows that the patchiness index declines with filter size
(see also Fig. 4). Two-tailed paired #-tests tested for sig-
nificant differences among the three layers. After Bonfer-
roni correcting the p values to allow for multiple compari-
sons (by increasing the calculated p values threefold), the
difference between all pairs of layers was highly signifi-
cant: luminance versus red—green, t(1514)=12.07; lumi-
nance versus blue-yellow, £(1514) =8.98; red—green versus
blue—yellow, #(1514)=4.64; all p values <0.0001.

The images were then categorized into animals, flow-
ers, foliage, fruits, landscape, manmade objects, shadows,

Table 2. Patchiness Index at Different Filter

Scales
Filter #1 Filter #4
Layer (Finest) Filter #2 Filter #3 (Coarsest) Average
Luminance 0.58 0.51 0.46 0.41 0.489
Red—green 0.73 0.72 0.72 0.70 0.717
Blue-yellow  0.66 0.66 0.65 0.64 0.653

Yoonessi et al.

Table 3. Patchiness Index in Different Categories
Sorted by the Patchiness Index in Luminance”

Luminance Red-Green Blue-yellow
Category (No. of
Images) PI  Slope PI  Slope PI Slope
Textures (41) 0.41 -0.76 0.75 -0.97 0.71 -1.03
Foliage (238) 0.44 -0.71 0.70 -0.82 0.58 -0.87
Animals (29) 0.49 -0.78 0.77 -0.89 0.68 -0.97

Shadows (49) 049 -0.74 0.72 -0.86 0.66 -0.94
Manmade (177) 0.50 -0.73 0.73 -0.85 0.72 -0.94

Flowers (61) 0.52 -0.72 0.70 -0.81 059 -0.87
Snow (40) 0.52 -0.72 0.76 -0.92 0.76 -0.97
Fruits (40) 0.54 -0.69 0.66 -0.73 0.61 -0.81

Landscape (81) 0.61 -0.81 0.72 -091 0.71 -0.98

“PI, patchiness index.

snow, and textures. Table 3 and Fig. 5 show that in all
categories patchiness was significantly different between
layers (again after Bonferroni correction). The most sig-
nificant differences among the three layers were found in
the foliage category, and the least significant differences
in the fruit category. The smallest difference in mean
patchiness between the luminance and the red—green lay-
ers was found for landscape scenes, and the highest dif-
ference for textures and foliage. In manmade and shadow
scenes, the red—green and blue—yellow patchiness indices
were similar.

Correlations between layer patchiness across all scenes
were low: 0.10, 0.38, and 0.32 for luminance with red—
green, luminance with blue—yellow, and red—green with
blue—yellow, respectively.

The average slopes of the amplitude spectra across all
scenes for the red—green, blue—yellow, and luminance lay-
ers were —0.73, —0.85, and —0.91, respectively. After Bon-
ferroni correction, the differences were all significant at
the p <0.001 level: luminance versus red—green, #(1514)
=8.08; luminance versus blue—yellow, #(1514)=12.72;
red—green versus blue-yellow, #(1514)=5.97; all p values
<0.0001. Correlations between spectral slope and patchi-
ness were low: —0.14, —0.48, and -0.22 for luminance,
red—green, and blue—yellow, respectively.

Relatively strong correlations were found among the
spectral slopes of the three layers: 0.82 for red—green with
blue—yellow, 0.76 for luminance with blue—yellow, and 0.6
for red—green with luminance.

5. DISCUSSION

We established a measure of patchiness that was both
valid and robust to noise and used it to compare the
patchiness of the red—green, blue—yellow, and luminance
layers of images of natural scenes. Across a large number
of scenes (n=758), the red—green layer was the most
patchy, followed by the blue—yellow layer, with the lumi-
nance layer the least patchy. Scenes with foliage, man-
made objects, trees, and nonplant scenes appeared to pro-
duce the biggest differences in patchiness between the
red—green and luminance layers, while the smallest dif-
ferences were found in scenes with landscapes and fruit.
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Patchiness Index in nine categories
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Fig. 5. Comparison of patchiness indices of three layers in different categories. Lum, luminance.

In the Introduction we said how previous studies had
shown that the three postreceptoral layers were differen-
tially sensitive to shadows and shading in natural scenes,
with the order of sensitivity being luminance
>Dblue—yellow >red—green [8,9,22]. Since this ordering of
sensitivity is the reverse of the ordering of patchiness
found here, a reasonable hypothesis is that the differ-
ences in patchiness between scenes, but more important
among the three postreceptoral layer representations of
those scenes, is determined by the amount of shadows/
shading. Figure 6 shows two groups of scenes, the upper

row with higher patchiness in the red—green than in the
luminance layers, and the lower row the opposite. The im-
ages in the upper row proliferate with shadows and shad-
ing, whereas in the lower row shadows and shading are
much less evident.

What might be the significance of these findings for the
organization of the primate color vision system? Psycho-
physical studies have established that the red—green and
blue—yellow channels have poorer spatial resolution than
the luminance channel, but higher contrast sensitivity at
low spatial frequencies [23,24]. The low-pass characteris-

(b)

Lum 0.69 0.57
RG 0.58 0.51
BY 0.64 0.55

0.41 0.80

0.29 0.52
0.57 0.59

Fig. 6. (Top row) Four images whose red—green patchiness is greater than their luminance patchiness. (Bottom row) Four images whose
luminance patchiness is greater than their red—green patchiness. Values of patchiness are shown underneath each image. Lum, lumi-

nance; RG, red—green; BY, blue—yellow.
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tic of the red—green channel may have evolved to detect
large patches of either red or green and/or to reduce noise
levels [3], while the high-resolution luminance channel
may have evolved to capture the fine details of shadows
and shading. Many natural textures, for example, grass,
are defined by their pattern of shadows and shading, a
pattern contained primarily in the high spatial frequen-
cies. However, since the spatial resolution of the blue—
yellow channel is lower than that of the red—green chan-
nel [23,24], the idea that resolution evolved to reflect
patchiness would predict that the blue—yellow layers
would be more patchy than the red—green layers, whereas
the opposite was found. It is more likely that the differ-
ences in resolution between the two chromatic postrecep-
toral channels reflect anatomical constraints imposed by
the layout of the retinal cone mosaic [25,26] and/or by
constraints imposed by chromatic aberration [27,28].

In the Introduction we mentioned the suggestion of
Parraga et al. [9] that when pixels are grouped into large
uniform areas, the slope of the Fourier amplitude spec-
trum tends to be slightly steeper than average. Consis-
tent with this idea is our finding that the red—green lay-
ers, which were the most patchy, had significantly steeper
spectral slopes than the luminance layers and that spec-
tral slope and patchiness were in general negatively cor-
related. However, the correlations were low, indicating
that spectral slope is a poor predictor of patchiness in
natural scenes.

Finally, the ordering of kurtosis values for the three
layers (red—green >luminance >blue—yellow) was differ-
ent from that of our measure of patchiness (red—green
>blue—yellow >luminance). We attribute this difference
to the fact that the blue—yellow channel responses to the
photographs of natural scenes were particularly suscep-
tible to photographic noise, as shown in our simulations.
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