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Is color patchy?
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In many natural scenes, shadows and shading, which are primarily luminance-defined features, proliferate.
Hence one might expect that the chromatic variations of natural scenes, which more faithfully represent the
layout of object surfaces, will contain relatively fewer and larger uniform regions than the luminance varia-
tions, i.e., will be more “patchy.” This idea was tested using images of natural scenes that were decomposed
into chromatic and luminance layers modeled as the responses of the red–green, blue–yellow, and luminance
channels of the human visual system. Patchiness was defined as the portion of pixels falling within a ± thresh-
old in the bandpass-filtered image, averaged across multiple filter scales. The red–green layers were found to
be the most patchy, followed by the blue–yellow layers, with the luminance layers the least patchy. The corre-
lation between image-layer patchiness and the slope of the Fourier amplitude spectrum was small and nega-
tive for all layers, the maximum value being for red–green �−0.48�. We conclude that the chromatic layers of
natural scenes contain more uniform areas than the luminance layers and that this is unpredicted by the slope
of the Fourier amplitude spectrum. © 2008 Optical Society of America

OCIS codes: 330.0330, 330.1720.
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. INTRODUCTION
nowledge of the physical structure of the natural visual
nvironment guides our study of human vision [1]. It has
een known for some time that the spatial structure of
he chromatic and luminance content of natural scenes is
ifferent [2] and more recently that the differences have
anifest physiological [3] and behavioral consequences

4]. In this communication we consider whether the chro-
atic and luminance layers of natural scenes differ in the

egree to which they form regions with relatively uniform
hromaticities or luminances. In other words, we consider
hether the color and luminance layers of natural scenes
iffer in the degree to which they are structurally sparse
r “patchy.” We use the term “patchiness” to describe the
roportion of the image that contains uniform areas—the
igher the patchiness, the larger and/or more numerous
he uniform areas. An alternative term that emphasizes
he proportion of pixels in the image comprising edges
ather than uniform areas is “structural sparseness” [5].
ither term would suffice here, but we prefer patchiness,
s it best captures the idea of the amount of uniform re-
ions.

A much-vaunted characteristic of natural scenes is the
hape of their Fourier amplitude spectra. In natural
cenes, Fourier amplitude is inversely proportional to
patial frequency f, or, more precisely, proportional to
/ fn, where the exponent n, which defines the (negative)
lope of the spectrum, varies slightly between scenes but
s on average close to unity [6,7]. Important for the
resent discussion is that the exponent n has been shown
o be similar for the chromatic and luminance layers of
atural scenes [8,9]. The 1/ f characteristic embodies the
act that energy is relatively strong at low spatial fre-
uencies, consistent with the presence of relatively large
1084-7529/08/061330-9/$15.00 © 2
ggregates of pixels with similar luminances/
hromaticities. The slightly steeper slopes in the ampli-
ude spectra of some scenes �n�1� has been explained by
he presence of particularly large aggregates of similar
ixel values, for example, from a large evenly colored ob-
ect [9]. The finding that the spectral slopes of the lumi-
ance and chromatic content of natural scenes are similar
ight lead one to suppose that the luminance and chro-
atic layers are equally patchy. However, the presence of
niform regions bounded by edges, a defining feature of
atural scenes, is primarily a higher-order structural
roperty. The simplest evidence for this is that phase
crambling a natural scene, which has no affect on the
mplitude spectrum, destroys any uniform regions. Thus
similarity in spectral slope is not necessarily an indica-

or of a similarity in patchiness.
Indeed, other considerations lead one to suppose that

he chromatic and luminance layers of natural scenes
ight differ in patchiness. Chromatic differences tend to

rise from differences in material composition, such as
rom differently colored objects and surfaces. Luminance
ifferences, on the other hand, arise not only from mate-
ial differences, i.e., from different object/surface reflec-
ances, but from inhomogenous illumination, such as
hadows and shading (sometimes termed “attached”
hadows). Because shadows and shading are primarily
uminance-defined features, and because they tend to pro-
iferate in natural scenes [2,10,11], it might be expected
hat the chromatic layers of natural scenes would be more
atchy than their luminance layers. The aim of this com-
unication is to test this prediction.
In daylight vision the image is first transduced by three

hotoreceptors: the long- (L-), medium- (M-), and short-
S-) wavelength-sensitive cones. The cone responses are
008 Optical Society of America
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hen combined into three channels, one luminance sensi-
ive and two chromatically sensitive. The luminance-
ensitive channel sums the outputs of the L and M cones
nd is known as the L+M channel. One chromatically
ensitive channel takes the difference between the out-
uts of the L and M cones and is known as the L−M chan-
el, while the other chromatically sensitive channel takes
he difference between the sum of the L- and M-cone re-
ponses and the S-cone response and is known as the S
�L+M� channel. Because these channels are very often

though strictly speaking incorrectly) referred to as the
uminance, red–green, and blue–yellow channels, we will
dopt these terms from now on.
In this communication the patchiness indices of the
odeled responses of the three postreceptoral channels to

atural scenes are compared. The reason for basing the
omparison on the modeled postreceptoral channel re-
ponses is that some previous studies have noted that the
ed–green and blue–yellow layers of natural scenes, while
n the main insensitive to shadows and shading, are nev-
rtheless differentially sensitive to them, with the blue–
ellow channel the more sensitive [9,12]. Scenes with
reen foliage are full of shadows, and these seem to shift
he wavelength spectrum slightly toward the yellow end
f the blue–yellow channel continuum [12]. On the other
and, the deep shadows seen in open-lit sunny days tend
o be bluish, because whereas the areas outside the shad-
ws are bathed in a mixture of yellow sunlight and blue
kylight, the shadows tend to be bathed mainly in blue
kylight [13]. These considerations lead to the testable
rediction that the blue–yellow channel response to natu-
al scenes will be less patchy than the red–green channel
esponse but more patchy than the luminance channel re-
ponse.

. MEASUREMENT OF PATCHINESS
higher-order statistic that has been suggested to cap-

ure natural scene patchiness is the kurtosis of the pixel
istogram [14,15]. Kurtosis is a measure of the peaked-
ess of a distribution and is defined as �4 /�4, where � is
he mean pixel value and � the standard deviation of
ixel values. Hence a possible measure of patchiness
ould be the kurtoses of the raw pixel histograms of the

ed–green, blue–yellow, and luminance channel re-
ponses. However, there are problems with kurtosis as a
easure of patchiness. Suppose one has a scene that con-

ains, among other things, a large uniform red region and
large uniform green region, i.e., is relatively patchy

long the red–green dimension. This would produce peaks
n the red–green pixel histogram on either side of the

ean and a low value of kurtosis. Figure 1 shows three
mages, their red–green layers (rendered as gray-level im-
ges), and the histograms and kurtoses of the layers. Two
f the three red–green layers have very low kurtosis, de-
pite having large uniform areas of flowers and leaves.
he intuitive solution to this problem is to measure kur-
osis not in the raw but in the bandpass-filtered version of
he image [15], as this would shift any peaks in the his-
ogram arising from uniform areas onto the mean, hence
evealing any high patchiness via high kurtosis. In our
ample images we found that the kurtosis of the filtered
mage is a reasonable measure of patchiness, but still not
he best. Why?

Kurtosis is very sensitive to noise, in that the presence
f low-amplitude noise around the mean reduces kurtosis.
ur images are contaminated by noise from the photo-
raphic process. Photographic noise is Gaussian, with an
mplitude that increases with the brightness of the scene
16]. Although the signal and noise levels may be similar
or the R (red), G (green), and B (blue) camera responses,
his may not be the case for the three postreceptoral chan-
el images derived from them. Remember that the lumi-
ance channel sums cone responses, the red–green chan-
el subtracts cone responses, and the blue–yellow
hannel both sums and subtracts cone responses. While
he cone signals will add or subtract, the noise amplitude
evels will not. The amplitude of the noise in the postre-
eptoral layers will depend not only on whether the cone
mages are added or subtracted but also on the degree to
hich the noise is correlated between cone images. For
xample, suppose the noise in the L and M images was
00% correlated. Subtracting the M- from the L-cone im-
ge to produce the red–green channel image would elimi-
ate the noise, whereas adding the cone images to pro-
uce the luminance channel image would double the noise
mplitude. On the other hand, if the noise was completely
ncorrelated, noise amplitude would increase by a factor
f �2, irrespective of whether the L- and M-cone images
ere added or subtracted. Using our method, the problem

s even more complicated. The color space we have em-
loyed, for reasons given later, is based on a log (logarith-
ic) transform of cone signals. The transform subtracts

he average log value of cone signals across the whole im-
ge from each log pixel cone value in order to center the
one signals around a midpoint of zero [17]. In an image
ith a wide signal variation, a log transform can decrease

he signal-to-noise ratio.
In our set of natural images the ratios of the average

bsolute magnitudes of the luminance, red–green, and
lue–yellow signals were 1.0, 0.11, and 0.88 respectively.
These values are measured in the logarithmic color space
escribed later and are unitless.) Taken together with the
rgument above that the signal-to-noise ratios resulting
rom photographic noise are dependent on both the type
f layer and the scene content, it is likely that the signal-
o-noise ratios will vary considerably among the three
ostreceptoral layers and render kurtosis a bad estimator
f patchiness. To examine this possibility, the following
imulation was performed. A test image consisting of two
alves separated by an edge was allocated red–green,
lue–yellow, and luminance contrasts with relative mag-
itudes equal to those given above for the natural image
et. The image was then converted into RGB (see Section

for details), and uncorrelated Gaussian noise, with �
standard deviation) multiples of 1 �x=1,2,4,8� was
dded to each plane [N�0,�2� where N is the normal dis-
ribution, 0 is the mean, and �=1,2,4,8]. The RGB im-
ges were then converted back to the three postreceptoral
ayers. The images were then filtered with a log-Gabor fil-
er (see below) with a spatial frequency of 12 cycles per
egree (cpd) and kurtosis was measured for each layer.
ith no noise added, the kurtosis was the same for all

hree layers: 40.34. The noise-added results are shown in
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ig. 2. Each point represents the average of five random
oise samples. As the figure shows, kurtosis falls with
oise � as expected, but more important, at a different
ate for the three layers (blue–yellow �red–green
luminance). Therefore, assuming the simulation reflects
hat happens with natural scene images, patchiness as
easured by kurtosis, even in bandpass-filtered images,
ill differ among the three postreceptoral channel layers

olely because of the differential effects of photographic
oise. This suggests that kurtosis of the filtered image is
ot a valid measure of patchiness when using different
ostreceptoral channel images of natural scenes.
To minimize the impact of photographic noise on the es-

imate of patchiness, we employed a modified version of
he structural sparseness index developed by Hansen and
ess [5]. In their method, the images were first filtered
sing log-Gabor filters in 3 spatial frequencies and 12 ori-
ntations. The portion of pixels that fell within ±1.5 �
rom the mean of each filtered image was calculated, and
he average value across filter scales was the index of
parseness. The important difference in our method is

ig. 1. Measurement of kurtosis in the red–green layer of three
hat we used a fixed threshold rather than one defined in
erms of the standard deviation (we also did not filter
cross orientations and used four rather than three filter
cales—see below). A fixed threshold was employed for
wo reasons. First, a fixed threshold is more robust to
oise. To demonstrate this, a similar simulation was per-
ormed to the one described above. This time 30 bipartite
est stimuli were generated, each with red–green, blue–
ellow, and luminance contrasts randomly selected from
ero to the average values determined from the natural
mage set. As in the previous simulation, the images were
onverted into RGB, and normally distributed noise
dded to each plane. This time the noise � was set to 10%
f the signal strength of each RGB plane. The images
ere then converted back into postreceptoral channel im-
ges and filtered as described above. Patchiness was mea-
ured according to three indices; threshold based on 1.5 �
as in Hansen and Hess [5]), a fixed threshold (±0.07; the
ange of values in the filtered images varies between
0.26 and ±1.12), and kurtosis. The formal statement of
he threshold based on the standard deviation is

l scenes with different perceived patchiness (see text for details).
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FT�xi,yi� = �1 FR�xi,yi� � + 1 . 5*��FR�xi,yi� � − 1 . 5*�

0 elsewhere
,

here FT�x ,y� is the thresholded filter response, FR�x ,y�
s the filtered response, and � is the standard deviation of
he pixel values in FR�x ,y�. For the fixed threshold, it is

FT�xi,yi� = �1 FR�xi,yi� � + 0.07�FR�xi,yi� � − 0.07

0 elsewhere
,

here the parameters are the same as above except that
he threshold is fixed. Kurtosis has been described earlier.

Because we used a filter that was range independent,
he noise-free images produced the same value of patchi-
ess for each of the 30�3 image layers. These values
ere 0.95, 0.94, and 40.34, respectively, for the three in-
ices of the fixed threshold, standard-deviation threshold,
nd kurtosis. For the noise-added images, patchiness var-
ed both as a function of noise level and postreceptoral
ayer, as shown in Table 1. A valid index of patchiness is
videnced by a measure that is similar for all three lay-
rs, and Table 1 shows this is the case for both the
tandard-deviation-based and fixed-threshold indices, but
ot for kurtosis. A robust measure of patchiness is evi-
enced by a relatively low variance of the measure across
oise levels. We measured the standard deviation of each
atchiness index across 30 images. The relative standard
eviations of patchiness were 300, 3, and 1, for the kurto-

ig. 2. Effect of noise in the RGB images on the measurement of
urtosis in the three postreceptoral channel responses to a bipar-
ite field. Each point represents the average kurtosis for five
ample images with normally distributed noise.

Table 1. Comparison of Three Methods, Kurtosis, S
Estimating Patchiness, Using 30

Kurtosis

easure Luminance Red–Green Blue–Yellow Luminan

ean 6.01 4.66 4.46 0.89
D 3.44 2.24 1.72 0.02
ean across

ayers
4.98

D across
ayers

2.64

aSD, standard deviation.
is, standard-deviation-based threshold, and fixed-
hreshold indices, respectively. Hence the fixed-threshold
ndex appears to be the most robust to noise.

A potential problem with the use of a fixed threshold
ather than one based on the standard deviation is the
ifferent absolute magnitudes of the responses in the
ed–green, blue–yellow, and luminance layers (see above),
hich would normally result in the lowest estimate of
atchiness for the red–green layer. However, the log-
abor filters used here are range independent; that is,

he range of the input has no effect on the range of the
lter response. Instead, it is the relations among pixels
hat determine the filter response. Put another way, if we
ere to multiply an image by any number, the log-Gabor
lter response would be unchanged. This is why the mea-
ures of patchiness for the three layers in both simula-
ions described above are nearly identical. Log-Gabor
ather than Gabor filters were also employed because
hey reset the dc level of the image to zero. Finally, it has
een suggested that the log-Gabor filter better represents
he responses of cortical cells than do Gabor filters
18,19].

To estimate patchiness we combined individual esti-
ates of patchiness across four spatial scales. Why? Fine-

cale filters will signal the presence of both small and
arge uniform areas, while coarse-scale filters will signal
nly relatively large uniform areas. So one could argue
rom this that only the finest-scale filters should be used.
owever, the coarse filters are able to detect coarse-scale

dges, such as from shading and shadows, which would be
ncoded as uniform areas by the finest-scale filter. There-
ore averaging across scales gives a better indication of
he overall patchiness of an image.

Figure 3 shows the resulting patchiness indices for syn-
hetic stimuli. The three postreceptoral layers have differ-
nt patch sizes, and this is reflected in their different
easures of patchiness, verifying that the patchiness in-

ex is directly correlated with the portion of image-layer
ixels that form uniform areas.
Figure 4 illustrates the sequence of stages involved in

ur estimation of natural scene patchiness. The images
ere first decomposed into luminance, red–green, and
lue–yellow images. Each layer was then filtered with iso-
ropic log-Gabor filters at four spatial scales. The filtered
mages were then converted to binary images using an ar-
itrary fixed threshold set to ±0.07 from the mean. The
ortion of pixels falling within the upper and lower

ard-Deviation Threshold and Fixed Threshold for
cial Images with Added Noisea

ard-Deviation
hreshold Fixed Threshold

d–Green Blue–Yellow Luminance Red–Green Blue–Yellow

0.88 0.88 0.97 0.98 0.98
0.02 0.02 0.006 0.006 0.007
0.87 0.97

0.020 0.009
tand
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hreshold bounds was measured, and the index of patchi-
ess was calculated as the average of these values across
he four filter scales. Finally, as mentioned earlier, since
revious research has suggested that the slope of the Fou-
ier amplitude spectrum may be correlated with the
mount of uniform areas in the image [9], we correlated
he estimates of patchiness with the measured slopes of
he images’ Fourier amplitude spectra.

. METHOD
. Equipment and Calibration
he scenes were photographed with two Nikon CoolPix-
500 digital cameras. Matlab version 7 was used for all
mage processing tasks. The cameras were calibrated to
emove gamma nonlinearity as follows. Each one of a set
f gray Munsell papers was illuminated by an incandes-
ent light with a constant-dc power and photographed.
dditionally, the luminance of the light reflected from
ach paper was measured with a Topcon SR-1 spectrora-
iometer. The average R, G, and B pixel values were plot-
ed against the corresponding measured luminance, and
tted with the following function: L=a�bs+1�, where L is

uminance, s is the pixel level value obtained for each of
he camera sensors (R, G, and B), and b is a constant that
etermines the slope of the curve.
To measure the spectral sensitivity functions for the

hree R, G, and B camera sensors, a white target was pho-
ographed through a series of narrowband optical inter-
erence filters from 400 to 700 nm at 10 nm intervals.
ach R, G, and B value was recorded, gamma corrected,
nd used to construct a spectral sensitivity function for
ach sensor, which was then normalized to produce equal
esponses of a flat-spectrum light.

. Images
rom the McGill Calibrated Color Image Database [20],
e took 758 natural scenes, representing a range of natu-

Fig. 3. Synthetic images and resulting
al environments (forests, mountains, flowers, fruits,
now, and textures) and urban scenes (buildings, traffic
igns, and manmade objects), photographed under a vari-
ty of different illumination conditions (sunny and
loudy) and at a variety of distances �0.5 m–1000 m�. The
mages were photographed by the camera (see above) and
tored in uncompressed Tagged Image File Format (TIFF)
les with a resolution of 1920�2560 pixels and a color
epth of 24 bits (256 levels for each R, G, and B image).
he camera’s smallest aperture setting �f7.4� was chosen
o capture the images with minimum within-image differ-
nces in focus. Then the images were resized and cropped
o 960�960 pixels wide using the nearest-neighbor inter-
olation algorithm.

. Conversion of Stimuli from RGB to LMS Color Space
sing the spectral sensitivities of the camera sensors and

he sensitivities of the L, M, and S cones from Smith and
okorny [21], a conventional 3�3 linear matrix was used

o convert the RGB camera values to LMS cone excita-
ions [20]. The matrices for conversion from RGB to LMS
nd vice versa were taken from the database website [20].

. Color Space and Postreceptoral Channels
modified version of the Ruderman color space was used

o model the three postreceptoral channels of human vi-
ion [17]. Cone contrasts for each pixel were defined as

LC = log L − log L, MC = log M − log M,

SC = log S − log S

here log L, log M, and log S are log pixel cone excitations
nd the same notations with overbars are log pixel cone
xcitations averaged across the image. The three postre-
eptoral responses to each pixel were defined as

res of patchiness. PI, patchiness index.
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ig. 4. Method for measuring patchiness. A sample image (a) with its luminance (b), red–green (c), and blue–yellow (d)
hannel responses. Below each filtered image is shown the pixel histogram and below each histogram is shown the binarized image
fter applying the fixed threshold. The index of patchiness on the right gives the average portion of light gray pixels in the four
inarized images.
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l̂ = �L̂C + M̂C�, �̂ = �L̂C + M̂C − 2ŜC�, �̂ = �L̂C − ĉC�,

here l̂, �̂, and �̂ are the luminance, blue–yellow, and
ed–green axes, respectively.

. Image Processing
he log-Gabor filter in the Fourier domain is defined as

LG�f,�� = exp�− � log�R�fi,�j�

Fpeak
	2

2 log� �1

Fpeak
	2 
� ,

here f and � are the polar coordinates of any point, R is
he radius vector, Fpeak is the central spatial frequency of
he log-Gaussian function, and �1 is the spatial frequency
andwidth of the log-Gaussian function.
Four spatial frequencies (3, 6, 12, and 24 cpd at the

iewing distance of 1 m) were used (Fig. 4). The threshold
f ±0.07 (the range of the images varied from ±0.26 to
1.12), although somewhat arbitrary, was chosen so that
atchiness ranged between 10% and 90% for all images.
his ensured that any differences in patchiness between

mages and layers would not be masked by floor and ceil-
ng effects. The portion of pixels inside the ± threshold
as measured. These portions were averaged over the

our spatial scales to give the estimate of patchiness, as
hown in Fig. 4. The spectral slope was measured using a
wo-dimensional fast Fourier transform. After removing
he dc component, the slope was measured using linear
egression from the lowest spatial frequency �1 cpd� to the
yquist frequency (wavelength of 2 pixels) on a log–log

cale.

. RESULTS
he mean values of patchiness for the luminance, red–
reen, and blue–yellow layers across all images were
.49±0.13, 0.71±0.08, and 0.65±0.13, respectively. The
verages at each filter scale are shown in Table 2, which
hows that the patchiness index declines with filter size
see also Fig. 4). Two-tailed paired t-tests tested for sig-
ificant differences among the three layers. After Bonfer-
oni correcting the p values to allow for multiple compari-
ons (by increasing the calculated p values threefold), the
ifference between all pairs of layers was highly signifi-
ant: luminance versus red–green, t�1514�=12.07; lumi-
ance versus blue–yellow, t�1514�=8.98; red–green versus
lue–yellow, t�1514�=4.64; all p values �0.0001.
The images were then categorized into animals, flow-

rs, foliage, fruits, landscape, manmade objects, shadows,

Table 2. Patchiness Index at Different Filter
Scales

ayer
Filter #1
(Finest) Filter #2 Filter #3

Filter #4
(Coarsest) Average

uminance 0.58 0.51 0.46 0.41 0.489
ed–green 0.73 0.72 0.72 0.70 0.717
lue–yellow 0.66 0.66 0.65 0.64 0.653
now, and textures. Table 3 and Fig. 5 show that in all
ategories patchiness was significantly different between
ayers (again after Bonferroni correction). The most sig-
ificant differences among the three layers were found in
he foliage category, and the least significant differences
n the fruit category. The smallest difference in mean
atchiness between the luminance and the red–green lay-
rs was found for landscape scenes, and the highest dif-
erence for textures and foliage. In manmade and shadow
cenes, the red–green and blue–yellow patchiness indices
ere similar.
Correlations between layer patchiness across all scenes

ere low: 0.10, 0.38, and 0.32 for luminance with red–
reen, luminance with blue–yellow, and red–green with
lue–yellow, respectively.
The average slopes of the amplitude spectra across all

cenes for the red–green, blue–yellow, and luminance lay-
rs were −0.73, −0.85, and −0.91, respectively. After Bon-
erroni correction, the differences were all significant at
he p�0.001 level: luminance versus red–green, t�1514�
8.08; luminance versus blue–yellow, t�1514�=12.72;
ed–green versus blue–yellow, t�1514�=5.97; all p values
0.0001. Correlations between spectral slope and patchi-
ess were low: −0.14, −0.48, and −0.22 for luminance,
ed–green, and blue–yellow, respectively.

Relatively strong correlations were found among the
pectral slopes of the three layers: 0.82 for red–green with
lue–yellow, 0.76 for luminance with blue–yellow, and 0.6
or red–green with luminance.

. DISCUSSION
e established a measure of patchiness that was both

alid and robust to noise and used it to compare the
atchiness of the red–green, blue–yellow, and luminance
ayers of images of natural scenes. Across a large number
f scenes �n=758�, the red–green layer was the most
atchy, followed by the blue–yellow layer, with the lumi-
ance layer the least patchy. Scenes with foliage, man-
ade objects, trees, and nonplant scenes appeared to pro-

uce the biggest differences in patchiness between the
ed–green and luminance layers, while the smallest dif-
erences were found in scenes with landscapes and fruit.

Table 3. Patchiness Index in Different Categories
Sorted by the Patchiness Index in Luminancea

Luminance Red–Green Blue–yellow

ategory (No. of
mages) PI Slope PI Slope PI Slope

extures (41) 0.41 −0.76 0.75 −0.97 0.71 −1.03
oliage (238) 0.44 −0.71 0.70 −0.82 0.58 −0.87
nimals (29) 0.49 −0.78 0.77 −0.89 0.68 −0.97
hadows (49) 0.49 −0.74 0.72 −0.86 0.66 −0.94
anmade (177) 0.50 −0.73 0.73 −0.85 0.72 −0.94
lowers (61) 0.52 −0.72 0.70 −0.81 0.59 −0.87
now (40) 0.52 −0.72 0.76 −0.92 0.76 −0.97
ruits (40) 0.54 −0.69 0.66 −0.73 0.61 −0.81
andscape (81) 0.61 −0.81 0.72 −0.91 0.71 −0.98

aPI, patchiness index.
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In the Introduction we said how previous studies had
hown that the three postreceptoral layers were differen-
ially sensitive to shadows and shading in natural scenes,
ith the order of sensitivity being luminance
blue–yellow�red–green [8,9,22]. Since this ordering of

ensitivity is the reverse of the ordering of patchiness
ound here, a reasonable hypothesis is that the differ-
nces in patchiness between scenes, but more important
mong the three postreceptoral layer representations of
hose scenes, is determined by the amount of shadows/
hading. Figure 6 shows two groups of scenes, the upper

Fig. 5. Comparison of patchiness indices of t

ig. 6. (Top row) Four images whose red–green patchiness is gre
uminance patchiness is greater than their red–green patchiness
ance; RG, red–green; BY, blue–yellow.
ow with higher patchiness in the red–green than in the
uminance layers, and the lower row the opposite. The im-
ges in the upper row proliferate with shadows and shad-
ng, whereas in the lower row shadows and shading are

uch less evident.
What might be the significance of these findings for the

rganization of the primate color vision system? Psycho-
hysical studies have established that the red–green and
lue–yellow channels have poorer spatial resolution than
he luminance channel, but higher contrast sensitivity at
ow spatial frequencies [23,24]. The low-pass characteris-

yers in different categories. Lum, luminance.

an their luminance patchiness. (Bottom row) Four images whose
es of patchiness are shown underneath each image. Lum, lumi-
hree la
ater th
. Valu
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ic of the red–green channel may have evolved to detect
arge patches of either red or green and/or to reduce noise
evels [3], while the high-resolution luminance channel

ay have evolved to capture the fine details of shadows
nd shading. Many natural textures, for example, grass,
re defined by their pattern of shadows and shading, a
attern contained primarily in the high spatial frequen-
ies. However, since the spatial resolution of the blue–
ellow channel is lower than that of the red–green chan-
el [23,24], the idea that resolution evolved to reflect
atchiness would predict that the blue–yellow layers
ould be more patchy than the red–green layers, whereas

he opposite was found. It is more likely that the differ-
nces in resolution between the two chromatic postrecep-
oral channels reflect anatomical constraints imposed by
he layout of the retinal cone mosaic [25,26] and/or by
onstraints imposed by chromatic aberration [27,28].

In the Introduction we mentioned the suggestion of
arraga et al. [9] that when pixels are grouped into large
niform areas, the slope of the Fourier amplitude spec-
rum tends to be slightly steeper than average. Consis-
ent with this idea is our finding that the red–green lay-
rs, which were the most patchy, had significantly steeper
pectral slopes than the luminance layers and that spec-
ral slope and patchiness were in general negatively cor-
elated. However, the correlations were low, indicating
hat spectral slope is a poor predictor of patchiness in
atural scenes.
Finally, the ordering of kurtosis values for the three

ayers �red–green� luminance�blue–yellow� was differ-
nt from that of our measure of patchiness �red–green
blue–yellow� luminance�. We attribute this difference

o the fact that the blue–yellow channel responses to the
hotographs of natural scenes were particularly suscep-
ible to photographic noise, as shown in our simulations.
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