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Abstract

Amblyopia or lazy eye is the most common cause of uniocular blindness in adults. It is caused by a disruption to normal visual
development as a consequence of unmatched inputs from the two eyes in early life, arising from a turned eye (strabismus), unequal
refractive error (anisometropia) or form deprivation (e.g. cataract). Animal models based on extracellular recordings in anesthetized
animals suggest that the earliest site of the anomaly in the primate visual pathway is the primary visual cortex (corresponding to the
striate cortex, cytoarchitectonic area 17 and area V1), which is where inputs from the two eyes are first combined in an excitatory
fashion, whereas more distal and monocular processing structures such as the retina and lateral geniculate nucleus (LGN) are
normal. Using high-field functional magnetic resonance imaging in a group of human adults with amblyopia, we demonstrate that
functional deficits are first observable at a thalamic level, that of the LGN. Our results suggest the need to re-evaluate the current
models of amblyopia that are based on the assumption of a purely cortical dysfunction, as well as the role for the LGN in visual
development.

Introduction

Amblyopia (incidence 3%) is a disorder of human visual development
that produces a uniocular visual loss, in which individuals have an
impaired amblyopic eye and a normal fixing eye. The physiological
origins of the deficit have been extensively investigated using single-
cell neurophysiology in animal models with amblyopia produced
artificially using a surgically induced strabismus, optically induced
ansiometropia, or from deprivation by monocular lid suture. The
current consensus is that the functions of the retina (Cleland et al.,
1980, 1982) and lateral geniculate nucleus (LGN) (Derrington &
Hawken, 1981; Blakemore & Vital-Durand, 1986; Sasaki et al., 1998;
Levitt et al., 2001) are normal (but see Sherman et al., 1975; Ikeda &
Tremain, 1978; Chino et al., 1994; Yin et al., 1997; Levitt et al., 2001)
although the LGN layers that receive input from the affected eye
display histological abnormalities (Guillery, 1972; Einon et al., 1978;
Tremain & Ikeda, 1982; von Noorden & Crawford, 1992). Anomalous
neural responses are first found in layer 4c of the striate cortex
(cytoarchitectonic area 17 in cat and area V1 in primate) and the
currently accepted notion that the earliest site of amblyopia is in the
input layers of the striate visual cortex is based primarily on there
being very little binocular excitatory convergence at the LGN level. In
human amblyopia less invasive techniques have to be used but these

have supported a cortical origin. Retinal evoked potentials suggest that
the eye itself is normal (Hess & Baker, 1984; Hess et al., 1985) and
functional magnetic resonance imaging (fMRI) demonstrates a cortical
deficit with reduced activations in V1 and extrastriate cortex (Barnes
et al., 2001; Muckli et al., 2006; Li et al., 2007).
Our understanding of the function of the LGN in vision has

undergone important changes in recent years (Sherman & Guillery,
2002). Its role as a simple relay station for retinal information has been
replaced by a realization that ascending information from the retina
undergoes complex modification within the LGN by inputs emanating
from the cortex, brainstem and hypothalamus (Sherman & Guillery,
1998). Only a fraction (approximately 6%) of the cells in the LGN are
concerned with feedforward transmission from the retina (termed
‘drivers’), with the vast majority modifying these afferent signals
(termed ‘modulators’) (Sherman & Guillery, 2002). Neurophysiolog-
ical studies in anesthetized animals are biased towards the LGN ‘driver
activity’ as ‘modulator activity’ is thought to be more susceptible to
anesthesia. This may explain why the histological abnormalities in the
LGN layers receiving input from the deprived eye (Guillery, 1972;
Einon et al., 1978; Tremain & Ikeda, 1982; von Noorden & Crawford,
1992) have not been found previously to have accompanying
functional correlates (Derrington & Hawken, 1981; Blakemore &
Vital-Durand, 1986; Sasaki et al., 1998; Levitt et al., 2001).
Functional magnetic resonance imaging provides a unique oppor-

tunity to address LGN function in humans. It avoids the confounding
problems of anesthesia and, by including the activation of local field
potentials rather than just spiking activity (Logothetis et al., 2001),
assesses the modulator-based activation of the majority LGN cells.

Correspondence: Dr Robert F. Hess, as above.
E-mail: robert.hess@mcgill.ca

Re-use of this article is permitted in accordance with the Creative Commons Deed,

Attribution 2.5, which does not permit commercial exploitation.

Received 25 September 2008, revised 5 January 2009, accepted 6 January 2009

European Journal of Neuroscience, Vol. 29, pp. 1064–1070, 2009 doi:10.1111/j.1460-9568.2009.06650.x

ª The Authors (2009). Journal Compilation ª Federation of European Neuroscience Societies and Blackwell Publishing Ltd

European Journal of Neuroscience



LGN functional imaging has been constrained by technical limitations
imposed by its small size and low signal strength; however, the normal
LGN can now be localized and its responses to achromatic (Chen
et al., 1998a,b, 1999; Fujita et al., 2001; Kastner et al., 2004;
Schneider et al., 2004) and chromatic (Mullen et al., 2008) stimuli
quantified. Here we use high-field strength fMRI to assess the
functional integrity of the LGN in human amblyopia by comparing
LGN activation when driven by the amblyopic and fellow fixing eyes,
using broadband stimuli with chromatic and achromatic contrast to
include responses in the parvocellular, magnocellular and koniocel-
lular LGN layers.

Materials and methods

Subjects and stimuli

We studied the responses in six amblyopes selected to cover a range
of etiologies (three strabismic, one anisometropic and two form-
deprivation amblyopes), as detailed in Table 1. We measured the
region of the retina used for fixation in all subjects using visuoscopy
(Table 1) and monitored the fixation eye movements of all amblyopic
subjects while they were viewing the stimulus in a control
experiment run outside the scanner using an in-house video
monitoring of the pupil with subsequent off-line analysis of fixational
variability. All subjects fixated on the central fixation mark provided,
the amblyopic eye being more unsteady than the fellow fixing eye
(Table 1). The degree of unsteadiness was small compared with the
field size used (12�). All experiments were undertaken with the
understanding and written consent of each subject, and the study
conformed to The Code of Ethics of the World Medical Association
(Declaration of Helsinki), printed in the British Medical Journal (18
July 1964) and the Ethics board of the Queensland Institute of
Technology.

The stimulus was a high-contrast squarewave checkerboard
stimulus (check size, 1.5�; field size, 12� width · 10� height) with
both AC and DC chromatic and achromatic squarewave modulation
at 16 Hz, used to provide sufficient stimulation to activate the
chromatic and achromatic cells of the magnocellular, parvocellular
and koniocellular layers of the LGN (Mullen et al., 2008). We
referenced responses to a blank with very low luminance as most of
the cells in the LGN are not DC-balanced and respond to a mean

light level. A central black fixation dot was provided throughout all
presentations.

Experimental protocols

A standard block design was used composed of alternate stimulus and
blank intervals (18 s stimulation, 18 s fixation, 10 blocks per run).
Each stimulus was presented in a two alternate forced choice paradigm
within a 3 s cycle; each stimulus presentation was for 800 ms with an
interstimulus interval of 200 ms and 1.2 s for response. To control for
attentional modulation known to affect cortical and subcortical
structures (O’Connor et al., 2002), subjects performed a two alternate
forced choice contrast discrimination task that involved discriminating
subtle changes in the contrast of pairs of alternately presented stimuli
within a stimulus cycle and responding with a button press. During the
fixation epochs dummy button presses were made. The contrast
difference between alternately presented stimuli was detectable with
all subjects performing the task with an average performance of
98.5 ± 2% with the amblyopic eye and 97.8 ± 2% with the fellow
fixing eye, demonstrating that the targets were visible to each eye and
properly imaged on their retinas. During the experimental paradigm
participants viewed the stimuli monocularly and a tight-fitting eye
patch was used to occlude one eye.

Magnetic resonance imaging

All magnetic resonance images were acquired using a 4T Bruker
MedSpec system at the Centre for Magnetic Resonance (Brisbane,
Australia). A transverse electromagnetic head coil was used for
radiofrequency transmission and reception (Vaughan et al., 2002). For
the fMRI experimental study, 256 T2*-weighted gradient-echo
echoplanar images depicting blood oxygen level-dependent (BOLD)
contrast (Ogawa et al., 1990) were acquired in each of 24 planes with
TE 30 ms, repetition time (TR) 1500 ms, in-plane resolution
3.1 · 3.1 mm and slice thickness 3 mm (0 mm gap). The slices were
taken parallel to the calcarine sulcus and arranged to include the
anatomical location of the LGN. Two to three fMRI scans were
performed in each session. Head movement was limited by foam
padding within the head coil. In the same session, a high-resolution
three-dimensional T1 image was acquired using an MP-RAGE

Table 1. Clinical details for the six amblyopic participants

Subject ⁄ type of
amblyopia Refraction Acuity

Eye
alignment

Fixation
centration

Fixation
variance History

JLK ⁄ strabismic +0.75D
+0.765D

6 ⁄ 5
6 ⁄ 48

LET 2� eccentric ±0.74�
±2.7�

Large LET patching age 2 years,
surgery age 5 years

BB ⁄ strabismic +0.50 ⁄ )0.5 · 160
+1.00 ⁄ )0.25 · 180

6 ⁄ 5
6 ⁄ 600

LET Central ±0.39�
±0.52�

Surgery to correct large angle eso
age 7 years

CRF ⁄ strabismic )2.75D
)3.00D

6 ⁄ 6
6 ⁄ 240

LXT, L hypoT 4� eccentric ±0.10�
±0.39�

LET and surgery in infancy and
age 25 years

SJH ⁄ anisometrope +7.00 ⁄ )3.00 · 150
+2.50 ⁄ )1.25 · 80

6 ⁄ 30
6 ⁄ 4.5

Ortho Central ±0.38�
±0.35�

First Rx age 19 years

DJL ⁄ deprivation +8.25 ⁄ )1.00 · 90
+0.25D

CF
6 ⁄ 6

RET 6� eccentric ±3.1�
±0.18�

Two operations for ET age 9 years

MLTdeprivation )2.25D
)1.50D

6 ⁄ 6
CF

LXT 2� eccentric ±0.42�
±1.8�

Cataract surgery age 7 years

R, right eye; L, left eye; ET, esotropia; XT, exotropia; ortho, orthotropic alignment; D, dioptre sphere; CF, count fingers; eso, esotropia; RX, refractive correction;
hypoT, hypotropia.
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sequence with TI 1500 ms, TR 2500 ms, TE 3.83 ms and a resolution
of 0.9 mm3.

Lateral geniculate nucleus localization

The LGN localization data were acquired in a separate scanning
session conducted under binocular viewing conditions. Left and right
LGNs were localized in each participant using both anatomical and
functional data. During scanning, participants viewed alternating
blocks of the high-contrast squarewave checkerboard (see ‘Subjects
and stimuli’ section above) and the blank intervals with a small dim
fixation dot. Each block lasted 18 s and was repeated 10 times in each
of two scanning runs. Data were analysed for each individual
participant using a general linear model analysis and statistical maps
of t-values were visualized at the false discovery rate corrected
(Benjamini & Hochberg, 1995) level of q < 0.001. LGNs were
defined as a stimulus responsive region in the appropriate anatomical
location (Kastner et al., 2004). Regions of interest were created by first
identifying the peak voxel (i.e. the voxel whose activity was most
reliably correlated with the presentation of the stimulus) within the
LGN region, then a cube of 10 mm3 was centered on the peak voxel
and the region of interest was defined as all voxels within the cube
contiguous with the peak voxel whose activity in response to the
checkerboard stimulus was above threshold. The Talairach coordinates
of all of the LGNs are given in Table 2.

Data analysis

Data analysis was conducted with the commercially available Brain
Voyager analysis package (version 1.9.10, Brain Innovations, Maas-
tricht, The Netherlands). Functional scans were high-pass filtered and
motion corrected using subroutines within Brain Voyager. They were
then aligned to each subject’s high-resolution anatomical images
(resampled at 1 mm3) and transformed to Talairach space (Talairach &
Tournoux, 1988). Time series data were extracted from the LGN
region of interest for each individual participant using an event-related
averaging paradigm. Time series data for each stimulation event were
normalized to the directly preceding 2TRs, when the subject was
viewing the blank, to provide a baseline for the %BOLD change
measure. Peak %BOLD response was calculated as the maximum
%BOLD change at a time-point within a window starting 4TRs (6 s)
after the onset of the stimulus and ending 4TRs after the offset of the
stimulus. Average %BOLD change was calculated as the average

%BOLD values present within the same window used for peak
%BOLD calculations. Two scanning runs were conducted per eye and
time series data were combined for subsequent extraction of %BOLD
change data from the LGN region of interest.

Results

Figure 1 shows the localization of the LGNs in one subject (JLK, a
strabismic amblyope), a time series response for our 10 mm3 region of
interest from each LGN illustrating our block design, and plots of the
averaged activation comparing left and right eye stimulation for each
LGN. The responses from each LGN were clearly reduced when driven
by the amblyopic eye (red symbols) compared with the normal fixing
eye (blue symbols). The results in Fig. 2 (lower six panels) show LGN
activations for each individual amblyope comparing stimulation by the
fixing and amblyopic eye. Results are averaged across both LGNs of
each subject. In all cases, with the possible exception of CRF, there was
less LGN activation when driven by the amblyopic eye (red symbols).
The top row of Fig. 2 shows the averaged group data for all six subjects
(12 LGNs) from which we have derived two measures for both fixing
and amblyopic eye stimulation, i.e. the averaged activity across the
time series and the peak activity. There was a significant difference
between amblyopic and fixing eye activations, with the LGN
activation reduced when it was driven by the amblyopic eye [peak
BOLD: t(5) = 5.25, P = 0.003; average BOLD: t(5) = 4.79,
P = 0.005, two-tailed]. There was no significant correlation between
either of these measures and the visual acuity of the amblyopic eye
(peak BOLD: Spearman’s rho = )2.32, P = 0.67; average BOLD:
Spearman’s rho = )2.32, P = 0.67).
Similar reductions in BOLD activation were obtained when

evaluating the responses of individual LGNs. Rather than comparing
left and right LGNs for each subject, we compared the LGNs
contralateral and ipsilateral to the amblyopic eye for each subject
(shown in supplementary Figs 1S and 2S, respectively). The LGN
contralateral to the amblyopic eye draws on nasal retinal fibers from
the amblyopic eye, whereas the ipsilateral LGN draws on temporal
retinal fibers from the amblyopic eye. For stimulation of the normal
fixing eye we found no difference between contralateral and ipsilateral
LGN activation, indicating no difference between nasal and temporal
retinal inputs to LGN. Such naso-temporal differences have been
reported at the cortical level (V1) using fMRI (Toosy et al., 2001). For
amblyopic eye stimulation we also found no significant differences
between activations of contralateral LGN (inputs from nasal fibers)
and ipsilateral LGN (temporal fiber inputs). Large eccentric fixations
in the amblyopic eyes would create asymmetries in the proportions of
the nasal and temporal retina stimulated compared with a centrally
fixated stimulus. This would be expected to create asymmetries in the
activations of the two LGNs, i.e. between contralateral (nasal) and
ipsilateral (temporal) inputs to the LGNs. The fact that there were no
such contralateral vs. ipsilateral asymmetries in the LGN activation,
especially in the amblyopes with some eccentric fixation (DJL, BB,
JLK and CRF), indicated that any eccentric fixation by the amblyopes
was not responsible for the results that we report. Moreover, our main
significant effect in Fig. 2 was based on the average of both LGNs of
each subject, in which any differences in the proportion of nasal to
temporal field stimulated have been cancelled out.

Discussion

This is the first quantitative analysis of the function of the LGN in human
amblyopia. Our finding of a functional deficit in the LGN of amblyopes

Table 2. The LGN coordinates and volumes located in stereotaxic space for
the six subjects

Subject

Left LGN Right LGN

Coordinates (mm)*

Volume
(mm3)

Coordinates (mm)*

Volume
(mm3)x y z x y z

BB )23 )26 )3 155 25 )25 2 86
CRF )21 )27 )3 905 20 )27 )1 852
DJL )19 )27 )3 91 18 )27 )1 147
JLK )21 )24 )3 542 23 )22 )2 612
SJH )23 )22 )4 243 25 )24 )2 283
MLT )19 )28 1 518 20 )27 0 655
Mean )21 )26 )2 409 22 )25 )1 439
SD 2 2 2 306 3 2 1 310

*Talairach coordinates (Talairach & Tournoux, 1988).
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with very different etiologies is novel and shows that the amblyopic
deficit is not confined to the cortex as is currently believed. Our current
psychophysical and neurophysiological models of amblyopia are
predicated on the assumption that the loss is of purely cortical origin,
these will now need to be re-evaluated in the light of these findings.
Moreover, the loss of function in the LGN, whose neurons are
monocular, arising from a developmental disorder normally associated
with a mismatch in binocular activation, indicates that the LGN plays a
more important and complex role in early visual development than
previously thought. Our results are consistent with a previous informal
clinical report from a single anisometropic amblyope in which it was
noted that the LGN, when driven by the amblyopic eye, was more
difficult to image (Miki et al., 2003). Although there was no detailed
numeric analysis of the response activations, this clinical observation is
consistent with our quantitative results.

There are a number of possible explanations for our finding. It is
unlikely that either the degree of eccentric fixation or the fixation
instability can account for the reduction in response that we observe.
As argued in the Results, eccentric fixations would be expected to
produce asymmetries in the contralateral vs. ipsilateral LGN activa-
tions, whereas none are found. Moreover, our results for the average of
both LGNs cancel out the effects of any asymmetry, and still show a
significant deficit. As we used a relatively large field size (12� across),
eccentric fixation or any fixation instability would have to be very
large for subjects to completely miss the test stimulus or for a large
asymmetry in the stimulation of the nasal vs. temporal fields to be
created. Moreover, our calculations show that there are no significant
correlations in our data between the differences in LGN activation and
either the degree of fixation variability or the degree of eccentric
fixation. We thus conclude that the deficit in LGN function that we

find for inputs from the amblyopic eye represents a genuine
physiological disorder in the LGN in amblyopia.
One question that arises is whether the reduced LGN response could

be due to reduced retinal function arising from the amblyopic eye.
Previously published data suggesting that the amblyopic eye is normal
are quite comprehensive and involve single-cell recording in deprived
animals (Cleland et al., 1980, 1982; Crewther et al., 1985), evoked
potential measurements in human amblyopes (Hess & Baker, 1984;
Hess et al., 1985), and clinical measurements of optic nerve fibre
density in human amblyopes (Bozkurt et al., 2003). Therefore, the
deficit reported here probably reflects LGN function per se or an
anomaly in the corticogeniculate processing of information. Animal
models of amblyopia have provided evidence for morphological
changes in the LGN, for example in neurons in the layers of the
binocular segment of the LGN that receive input from the deprived
eye in animals (Guillery, 1972; Tremain & Ikeda, 1982), and are
supported by a postmortem study in human (von Noorden et al., 1983;
von Noorden & Crawford, 1992). There are also some isolated reports
of functional abnormalities in the cellular responses from the LGN in
cats deprived of vision or eye misalignment including a selective loss
of X-cell function (Ikeda & Wright, 1976; Ikeda et al., 1978; Chino
et al., 1994), a selective loss of Y-cells (Sherman et al., 1975; Yin
et al., 1997), and more subtle changes in responsiveness (Levitt et al.,
2001). Our results indicate that these changes may have functional
correlates in the LGN in human amblyopia.
A more recent analysis of thalamic processing has identified at least

two separate processes: ‘drivers’ and ‘modulators’ (Sherman &
Guillery, 1996, 1998, 2002; Reichova & Sherman, 2004). ‘Drivers’
refer to neurons that transmit the information to be relayed from
sensory end organs, whereas ‘modulators’ serve to modulate the

Fig. 1. (A) A stereotaxic representation (coronal slice, radiological convention) for one subject (JLK), a strabismic amblyope, showing the localization of the left
and right LGNs. The two LGNs are indicated by the white dashed circles for illustration purposes only. The activation depicted is the result of a general linear model
analysis contrasting binocular stimulation with fixation. False discovery rate (FDR) corrected for multiple comparisons (q < 0.001) was used to define regions of
interest (ROIs) for each subject. The ROI was never greater than 10 mm3 and was smaller than the region of activation shown here. The color bar represents the
t-values. (B) The ROI time series for the left and right LGN obtained from our block design. Vertical colored stripes indicate the blocks of stimulation (green) and
non-stimulation (grey) epochs (each lasting 12 TRs or 18 s), and the white line indicates the raw time-course in units of voxel intensity over time (in units of 1 TR or
1.5 s). The time-course clearly follows the stimulation epochs indicated in the panels. (C) The two panels in the lower left and right corners of the figure depict
%BOLD change as a function of time for the right and left LGNs, respectively, when driven by either the fellow (blue line) or amblyopic (red line) eye. %BOLD
signal change was calculated on a point-by-point basis by normalizing each time-point within the stimulation epoch to the average of the last six TRs in the fixation
epoch. Stimulus onset was at TR no. 0 and stimulus offset was at TR no. 12. The responses are averaged across scans. Error bars represent ± 1 SEM. Results show
that there is reduced activation in each LGN when driven by the amblyopic eye compared with the fellow fixing eye.
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Fig. 2. Group (top left) and individual (lower three rows) data showing LGN activation time-courses for six human amblyopes averaged across left and right LGNs
comparing stimulation of fixing and amblyopic eyes (for details of calculations see Fig. 1). Top right panel shows two measures of the activation derived from the
group data. The average %BOLD response (as marked) was calculated by averaging the 12 time-points (TRs) starting from TR no. 4 (6 s after stimulus onset). The
peak %BOLD change was calculated as the maximum %BOLD change value that occurred within the same time window. Amblyopes as a group showed
significantly (**) reduced average and peak LGN activation for amblyopic compared with fellow fixing eye stimulation [average BOLD: t(5) = 4.79, P < 0.005,
two-tailed; peak BOLD: t(5) = 5.25, P = 0.003, two-tailed]. Error bars show ± 1 SEM. **P < 0.01.
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thalamic transmission of the driver input. As fMRI activations reflect
local field potentials more than all-or-nothing action potentials
(Logothetis et al., 2001) and as only approximately 6% of LGN
synaptic junctions subserve driver-based activity (Sherman & Guil-
lery, 1998), it seems likely that the reduced fMRI activation reported
here during amblyopic eye stimulation reflects a change to the
modulatory control of the LGN, mostly coming from layer 6 of V1
(Van Horn & Sherman, 2004).

Our conclusion that amblyopia can no longer be regarded as an
exclusively cortical disorder has important implications for our
understanding of how binocular competition regulates brain plasticity
during early visual development. The cortex, which has long been
considered the site of amblyopia (Derrington & Hawken, 1981;
Blakemore & Vital-Durand, 1986; Crewther & Crewther, 1990), is
where the inputs from the two eyes first combine and compete for
representation. Although the unique laminar structure of the LGN and
its monocular neurons keep the inputs of the two eyes separate, it also
offers an excellent site for the descending regulation of the monocular
input from the amblyopic eye. The corticogeniculate feedback from
layer 6 of the cortex innervates LGN relay cells directly and also
indirectly via the thalamic reticular nucleus, leading to a direct
excitation via the former and a disynaptic inhibition via the latter.
This forms part of the proposed modulator circuit and is subserved by
the vast majority of synaptic junctions in the LGN (Sherman &
Guillery, 1998, 2002). It is unclear whether the reduced LGN
activation in adult amblyopes is due to local inhibitory influences
within the LGN or the result of feedback influences from the cortex.
The corticogeniculate feedback pathway (Tsumoto & Freeman, 1981;
Freeman & Tsumoto, 1983) may underlie the inhibitory binocular
interactions in the LGN of normal animals (Sanderson et al., 1969,
1971; Rodieck & Dreher, 1979; Pape & Eysel, 1986; Xue et al.,
1987). Furthermore, there is evidence that the loss of cortical
binocularity in deprived cats is due to a GABA-mediated inhibition
(Duffy et al., 1976; Burchfiel & Duffy, 1981; Sillito et al., 1981;
Mower et al., 1984) that may also modulate the function of the LGN
via corticogeniculate feedback.

Supporting information

Additional supporting information may be found in the online version
of this article:
Fig. S1. Group and individual time series data for activation of the
LGN contralateral to the amblyopic eye.
Fig. S2. Group and individual time series data for activation of the
LGN contralateral to the amblyopic eye.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors. Any
queries (other than missing material) should be directed to the
corresponding author for the article.
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