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We have simultaneously measured detection and temporal frequency identification for both red–green isolu-
minant and achromatic stimuli over a range of temporal frequencies for two observers. Results show that
temporal frequency identification can be made along the temporal frequency dimension for both red–green and
achromatic stimuli at contrasts close to detection threshold. In general, temporal frequency identification was
better for the achromatic than for the red–green stimuli; however, the level of chromatic identification perfor-
mance was still sufficient to permit us to reject the notion that the red–green mechanism embodies a single
temporal filter. We have developed a model based on signal detection theory that assumes that detection and
identification both depend on the properties of the temporal filters underlying each mechanism. From this we
have derived putative underlying shapes and sensitivities for the temporal filters of the red–green and achro-
matic mechanisms that comprise a low-pass and a bandpass filter for red–green color vision and two bandpass
filters for luminance vision. Finally, we suggest that the relative perceived slowing of isoluminant stimuli
may be accounted for by a common motion analysis subserved by different front-end temporal filters for red–
green and achromatic motion signals. © 1996 Optical Society of America.
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1. INTRODUCTION

There have been a number of attempts to deduce the tem-
poral impulse response for the red–green (RG) color-
opponent mechanism of human vision by single-pulse1 or
double-pulse2–5 methods. From these studies both
monophasic and biphasic impulse response functions
(IRF’s) have been inferred for color vision, the differences
between them being attributed principally to different
levels of light adaptation and to other details of the ex-
perimental methods employed.5 However, despite differ-
ences in reported impulse response shapes, these investi-
gations all assume that for red–green color detection a
single chromatic IRF is based on the existence of a uni-
tary chromatic filter that is tuned for temporal frequency
(TF). Whereas such a filter may explain the shape of the
temporal IRF for one- and two-pulse detection data, the
assumption of a single chromatic TF-tuned filter is dubi-
ous for two reasons:
First, many of these studies have also assumed a single

TF filter for luminance vision, but experiments on TF de-
tection and identification, temporal masking, and sub-
threshold summation have demonstrated the existence of
a small number of temporally tuned mechanisms that
subserve the temporal contrast sensitivity function,6–14

albeit with some debate concerning the exact shape and
number of filters.15 The outputs of these filters have
been used to model luminance TF discrimination, and it
has further been suggested that they serve as the basis
for metric of velocity coding.16–19 The number and the
bandwidth of the temporal filters that subserve color vi-
sion has yet to be addressed.
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Second, in a single filter system, changes in filter out-
put that are due to the shifts in stimulus TF would be
confounded with changes that are due to contrast. Thus
a single univariant mechanism would not permit TF dis-
crimination or the identification of stimuli moving at dif-
ferent speeds, in the absence of other cues. To code TF
independently requires at least two filters tuned to over-
lapping TF ranges.19,20 There are no reports of RG chro-
matic TF discrimination in the literature. However, al-
though it was originally thought that color information
provided no useful cues for motion processing, many sub-
sequent experiments have shown that color vision does
seem to support at least some degree of motion perception
(for a review, see Ref. 21) and can also discriminate
among different velocities.22 It is thus enticing to inves-
tigate the proposal of multiple underlying temporal filters
for color vision.
In this study we address the question of whether the

RG chromatic system can support the discrimination of
TF at and close to detection threshold. We simulta-
neously measure detection and TF identification thresh-
olds for RG and achromatic stimuli and develop a model
to derive from these data the likely bandwidths and sen-
sitivities of the temporal filters that subserve color vision.
Our data show that TF discrimination is possible close to
detection threshold for chromatic stimuli, and we have
therefore used two temporal filters in the model, repre-
senting the minimum number required for TF and con-
trast disambiguation. Based on computational consider-
ations of efficient signal processing and not on any a
priori physiological result, we further suppose that these
filters share the property of temporal orthogonality. We
© 1996 Optical Society of America
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assume that detection performance is based on probabil-
ity summation over time and that the upper envelope of
underlying filter sensitivity must correspond to the mea-
sured temporal contrast sensitivity functions. The si-
multaneously measured identification thresholds further
constrain the underlying filter shapes. From this model
we derive a set of temporal IRF’s that subserve the RG
and achromatic mechanisms. The implications of the
model for how these temporal filters can be used in flicker
and speed perception are discussed.

2. METHODS
A. Stimuli
The stimuli were cardinal RG or achromatic defined hori-
zontal Gabor patches. They were generated by a digital
waveform generator (CRS VSG 2/2) and were presented
on a red–green–blue (RGB) monitor (Barco Calibrator
CCID 7751) running at a frame rate of 120 Hz. The
mean chromaticity (1931 CIE: x 5 0.3377, y 5 0.3184)
and luminance (62.2 cd/m2) of the display were not al-
tered by the presentation of the stimuli, which had a spa-
tial frequency of 0.25 cycles/degrees, spatially windowed
by a Gaussian with a standard deviation (SD) of 4°. The
spatial window was truncated at 62 SD (16° diameter).
The vertical profile of the stimuli had 12-bit resolution,
and the horizontal profile was generated by use of frame-
by-frame dynamic dithering of 12 statistically indepen-
dent 1-bit Gaussian masks (pixel size 0.54 3 0.54 mm).23

The screen display size was 35.4 cm 3 26.2 cm. Calibra-
tion and gamma correction were achieved by methods de-
scribed by Metha et al.24

In the two-interval forced-choice (2-IFC) tasks, the
stimuli were presented sequentially in 1.0-s intervals
with contrast ramped on and off according to a raised co-
sine envelope and separated by 500 ms. The stimuli
were counterphase flickered by sinusoidal contrast modu-
lation. The flicker rates used for the luminance-defined
stimuli were 1.0–32.0 Hz in octave steps. For the RG-
defined stimuli the same TF’s were used, except that the
32.0-Hz stimulus was replaced by a 22.6-Hz stimulus.

B. Subjects
The two authors served as subjects. Testing was per-
formed monocularly at a distance of 90 cm from the CRT
face under dim ambient room illumination. A small fixa-
tion marker (2-mm-diameter black spot) centered on the
screen aided fixation. Subjects wore their prescribed cor-
rective spectacles if necessary. Both subjects had normal
color vision.

C. Psychophysical Procedures and Analysis

1. Determination of Red–Green Isoluminance
The cone contrast weights to the luminance postrecep-
toral mechanism are not fixed but depend on the observer,
the state of chromatic adaptation, and the TF content of
the stimulus,23,25,26 and thus we determined the lumi-
nance cone contrast ratio for each TF tested for each ob-
server. This measurement was made by a minimum mo-
tion paradigm, by a method of adjustment.27 A stimulus
that equally modulated L- and M-cone contrast in spatial
antiphase at a fixed surpathreshold contrast, drifting at
the test TF, was continuously presented. To this stimu-
lus we superimposed an L-and-M-cone in-phase stimulus,
the contrast of which was controllable by the observer us-
ing a computer mouse. Observers adjusted the contrast
of this luminance stimulus to obtain the minimum mo-
tion, and the mean of 10 settings was obtained. The re-
sulting stimulus defines the RG isoluminant direction.
Figure 1 shows the L:M ratio cone contrast contribu-

tion ratio of the luminance mechanism as measured by
the above technique for both observers as a function of
TF. The error bars represent the SD’s of 10 minimum
motion settings. The L:M ratio is found to vary signifi-
cantly for both observers as a function of TF and, inter-
estingly, in opposite directions. These findings are in
line with previous reports that isoluminance settings can
vary markedly among individuals28 and also depend on
temporal frequency.23,25,26,29

The cardinal direction for the luminance mechanism
was assumed to be the achromatic stimulus direction,
which modulates L-, M-, and S-cone contrasts equally and
in phase. Because the RG isoluminant direction changes
with TF, to relate threshold measurements across TF’s we
base the reported cone contrast sensitivities on the pro-
jections of the cardinal stimuli onto the inferred achro-
matic and RG mechanism directions (the direction in cone
contrast space that optimally excites each postreceptoral
mechanism30).

2. Detection and Identification Thresholds
We measured detection and identification performance si-
multaneously for pairs of different TF stimuli as a func-
tion of contrast, using a 2 3 2-IFC procedure. In any
session one temporal frequency from the set (TF1) was
paired with another (TF2), and simultaneous detection
and TF identification judgments were made following
each two-interval trial, at five different contrast levels.
This was done for 15 paired combinations of TF1 and TF2,
separately for both RG and achromatic cardinal direc-
tions. To acquaint the observer with the appearance of
stimuli close to threshold and to establish approximate
detection thresholds, we performed simple interleaved
staircases for each TF pair immediately beforehand.

Fig. 1. RG isoluminance ratios as a function of TF. Each point
represents the mean of 10 minimum motion settings in the L:M
plane of cone contrast space. The error bars represent 1 SD.
The filled squares are the results for observer ABM, and the open
circles are for observer KTM.
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These staircase-derived thresholds were used to place five
contrast levels for each TF, spanning detection threshold
in 0.15-log-unit steps. Because the contrasts used in the
experiments straddle detection threshold for both TF’s,
contrast itself cannot be used to aid in identifying which
stimulus was presented in any one 2-IFC trial.
For each stimulus at each contrast level, 40 2-IFC tri-

als were randomly presented. The observer was asked to
indicate by a button press, first in which interval the
stimulus appeared (detection task) and second whether
the stimulus was the faster or the slower of the pair un-
der consideration (identification task). Feedback was
given after each response, so the observer could maintain

Fig. 2. Example of the four psychometric functions generated by
each 2 3 2-IFC experimental block. The filled squares repre-
sent detection performance (Question 1) for the 2-Hz (top) and
the 8-Hz (bottom) stimuli, which were presented 40 times at five
contrast levels in random order spanning predetermined thresh-
old ranges. Detection psychometric functions were fitted by use
of Weibull functions constrained to give chance performance at
low contrast levels. Weighting was applied by binomial SD es-
timates. Open squares represent identification performance
(Question 2). Because identification performance can be subjec-
tively biased, Weibull functions fitted to these data were con-
strained by complementary guess rates, as explained in the text.
an updated impression of each TF during the task. The
inter trial interval was 500 ms, and in each session the
400 trials (2 TF’s 3 5 contrast levels 3 40 trials, requir-
ing 800 responses) typically took ;30 min.

3. Fitting the Psychometric Functions
The detection and identification experiments yield four
psychometric functions per pair of temporal frequencies.
An example is shown in Fig. 2, which shows performance
for detecting and identifying which of a 2- or an 8-Hz
achromatic stimulus was presented, as a function of con-
trast. The detection psychometric functions are each fit-
ted with two-parameter Weibull functions (base-2) con-
strained to asymptote at 50% levels for low contrasts.
The parameters reflect the threshold contrast at 75% cor-
rect performance and the slope of the psychometric func-
tion (b). However, the identification question is suscep-
tible to bias. For example, even at low contrast levels
that yield chance detection performance, Fig. 2 shows
that the 2-Hz stimulus was reported more often than the
8-Hz stimulus, even though both were presented ran-
domly at equal rates. The difference in guess rate (or
bias) can be compensated for because the guess rates
must sum to unity. The identification psychometric func-
tions were therefore each fitted with Weibull functions
that were constrained to asymptote at complementary
guess rates for low contrasts. The threshold parameter
thus specifies the contrast at which performance reaches
a midlevel between guessing and perfect performance,
and, when they are adjusted for 50% guess rates, the de-
tection and identification thresholds both refer to the
same level of performance in each task.
Psychometric functions were fitted simultaneously by a

least-chi-squared procedure employing the estimated bi-
nomial SD’s at each point as weight factors. This re-
sulted in determination of nine parameters with associ-
ated SD’s for each TF pair (four threshold estimates, four
psychometric function slopes, and the identification bias
rate). We then used the fitted threshold parameters and
their estimated SD’s to determine the multiplicative in-
crease in contrast above detection threshold, permitting
threshold identification performance (which we call factor
alpha) and an estimate of the SD for this measure.

3. RESULTS
Detection threshold data for all 15 paired combinations of
TF’s results in 5 estimates at each frequency. Figures
3(a) and 3(b) show the average and the SD of the detec-
tion thresholds for achromatic and RG mechanisms, re-
spectively, plotted as cone contrast sensitivity versus TF
on log–log axes. Both of the achromatic temporal con-
trast sensitivity functions display the typical bandpass
shape for this low spatial frequency, with sensitivity
peaking at ;8 Hz.30 Likewise, Fig. 3(b) shows the detec-
tion results for stimuli isolating the RG mechanism that
display a characteristic low-pass shape.32,33 The use of
cone contrast allows the sensitivity of the luminance and
RG mechanisms to be compared directly. For stimuli be-
low ;8 Hz the RG mechanism is more sensitive than the
luminance mechanism under these conditions. Although
the extrapolated TF cutoff is only slightly lower for the
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RG than for the luminance mechanism, because of the
high degree of overlap in L- and M-cone spectral sensitiv-
ity RG performance much above 22.6 Hz cannot be real-
ized. The thicker curves in Fig. 3 represent the resulting
model fits (described in detail in Section 4) for detection
performance, based on the inferred underlying filters
whose modulation transfer functions (MTF’s) are shown
by the thinner curved lines and whose impulse response
profiles are shown in the insets.
As the temporal frequencies of two stimuli (TF1 and
TF2) get closer together, they begin to appear more simi-
lar, and so their correct identification becomes increas-
ingly difficult at detection threshold levels. However, it
is generally found that at suprathreshold contrast levels
correct classification of the two TF’s can again be made.
The ratio of threshold contrast for identification/detection
performance (factor alpha) is a measure of how distin-
guishable TF1 and TF2 are at low contrast levels. If cor-
Fig. 3. Temporal cone contrast sensitivity functions for both observers for (a) achromatic and (b) RG isoluminant stimuli. The filled
squares represent the mean and the SD of the five detection thresholds determined for each temporal frequency during the 2 3 2-IFC
comparison sessions. The thicker, lighter curves represent the model predictions for detection performance after parameters were ad-
justed to give the best fit for both detection and identification data. The curves labeled H1 and H2 in (a) and H0 and H1 in (b) are the
MTF’s of the inferred filters underlying the luminance and the RG mechanisms, respectively. The normalized IRF’s of the best-fitting
filters are shown as an inset in each case; the filter gain factors have not been applied (refer to the text and to Table 1 for details).
Figure 1 shows that the luminance mechanism receives varying L- and M-cone contrast input as a function of TF; therefore luminance
sensitivity is given here as the reciprocal (in cone contrast units) of the projection magnitude of the threshold achromatic cardinal stimuli
onto the measured luminance mechanism for each TF. RG sensitivity is given as the reciprocal of the projection magnitude of the
threshold isoluminant stimuli onto the RG mechanism, which we assume receives fixed (equal and opposite) L- and M-cone contrast
input at all TF’s.
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rect identification is possible at detection threshold, alpha
is unity. An alpha value of 2.0 for TF1 means that TF1
contrast must be raised to twice its 75% detection thresh-
old level before it can be correctly identified (75% of the
time) as TF1 and not TF2.
Figures 4 and 5 show identification performance for ob-

servers ABM and KTM, respectively, for achromatic
stimulus pairs. The filled squares indicate alpha for
each frequency (TF1) given on the abscissa when paired
in sessions containing TF2 (marked by arrows and indi-
cated at the top of each panel). The error bars are SD
estimates derived from the parameters of the detection
and identification psychometric function fits. Alpha val-
ues were not averaged across conditions: i.e., alpha for a
1-Hz stimulus with a comparison TF of 2 Hz is plotted in-
dependently of the alpha that arises when TF1 is 2 Hz
and TF2 is 1 Hz, resulting in the 30 data points shown.
These factors are not always the same, and this point is
taken up later in the discussion.

Fig. 4. Identification performance among achromatic TF pairs
for observer ABM. For conditions comparing the TF labeled and
marked by an arrow in each panel (TF2), the symbols represent
alpha (the multiplicative factor by which contrast must be raised
above detection threshold to permit 75% correct identification)
for each compared frequency (TF1). The error bars are SD esti-
mates derived from the detection and identification psychometric
function fits. The thicker, lighter curves represent the model
prediction after parameters were adjusted to give the best fit si-
multaneously for both the detection and the identification data,
resulting in the filter shapes shown in the insets of Fig. 3.
As expected for achromatic stimuli, alpha approaches
unity for different frequencies and increases when TF’s
are closer together. The data for both observers show
that correct identification can occur at detection threshold
for each TF tested, as long as the comparison TF was suf-
ficiently different. An interesting case occurs for the
4-Hz (and to a lesser extent for the 8-Hz) comparison TF
whereby identification performance for both higher and
lower TF’s approaches threshold levels at detection
threshold contrasts. This is particularly true for ob-
server KTM; for example, in sessions containing the 4-Hz
stimulus all other tested TF’s could be correctly identified
as often as they could be detected. This finding has im-
plications for later modeling, especially concerning the
number of underlying filters involved.
Alpha for RG chromatic stimulus pairs is shown in

Figs. 6 and 7 for each observer. These show the same
general trends as for the achromatic stimuli in that alpha
is high when TF1 and TF2 are close together and that this
factor decreases when the difference between TF1 and
TF2 increases. The data show that TF identification is
possible among RG stimuli at contrasts approaching de-
tection threshold. Overall, performance at detection
threshold levels was slightly better for observer KTM, a
trend also evident in the achromatic data. The thicker,
lighter curves in Figs. 4–7 represent the results of a two-
filter model capable of predicting both detection and iden-
tification performance, which is discussed next.

Fig. 5. Identification performance among achromatic TF pairs
for observer KTM. Other details are the same as for Fig. 4.
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4. MODEL
The model that we propose considers the tasks of detec-
tion and TF identification as two separate processes, both
drawing on information derived from the outputs of two
independent TF-tuned linear filters.
Our results show that TF’s can be distinguished close

to detection threshold in the absence of contrast cues for
both RG and achromatic stimuli. This argues against
the operation of a unitary temporal filter as the basis of
all temporal processing, as such a system would confound
TF and contrast. The most parsimonious way to model
these results is to propose that both detection and TF
identification performance rely on the output of at least
two independent linear temporal filters. The property of
independence is not an absolute requirement but is based
on considerations of information processing theory to en-
sure that the principle of minimum redundancy is upheld
as well as allowing analytical solutions for calculations
involving probability summation over time.
Each temporal filter is fully described by its temporal

impulse response function h(t). The proposed filters
come from the set of log Gaussians and their temporal de-
rivatives, as suggested by Koenderink34 and used by oth-
ers because of their inherent causality and for other theo-
retical reasons.34–36 Any temporal IRF and its first
temporal derivative are orthogonal and will therefore give

Fig. 6. Identification performance among RG TF pairs for ob-
server ABM. Other details are the same as for Fig. 4.
statistically independent responses to random white
noise. By choosing two such filters as our basis set we
maintain the independence requirement, although it
must be noted that this does not mean that the filters’
MTF’s do not overlap because these profiles represent
only magnitude spectra; the temporal phase information
is not displayed.

A. Filter Form and Response
A log Gaussian temporal impulse response has the form

h0~t ! 5 A0 expF2S ln~t/t!

s D 2G , (1)

where t and s are parameters that determine the peak
position and width of the IRF and A0 is a scaling factor
that controls the sensitivity of the filter. The subscript
zero denotes that this is the generator function, and the
first and the second temporal derivatives, h1 and h2 , are
described by

h1~t ! 5 2A1F ln~t/t!

ts2 GexpF2S ln~t/t!

s D 2G , (2)

Fig. 7. Identification performance among RG TF pairs for ob-
server KTM. Other details are the same as for Fig. 4.
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h2~t ! 5 A2H 22

~t2s2!
1

2 ln~t/t!

~t2s2!
1

4@ln~t/t!#2

~t2s4!
J

3 expH 2F ln~t/t!

s
G2J , (3)

where A1 and A2 control the sensitivities of the filters.
Note that, apart from the sensitivity factors, the whole
family of IRF profiles is governed by just two parameters,
t and s.
The Gabor stimuli have a normalized temporal wave-

form given by

g~t, f ! 5 @1/2 2 1/2 cos~2pt !#cos@2pf~t 2 1/2!#, (4)

where f is the stimulus temporal frequency in hertz and t
represents time in seconds.
Following Watson,37 it is convenient to describe the

stimulus contrast waveform C(t) as the product of
g(t, f ) and a positive constant C equal to the peak con-
trast of the waveform. According to linear systems
theory, the response of each filter i, as a function of time
t and stimulus frequency f, will be given by

Ri~t, f ! 5 Cg~t, f ! * hi~t !, (5)

where the asterisk denotes the convolution operation.
Thus for any given stimulus of the form g(t, f ) and con-
trast C we can calculate the output response R of each fil-
ter over time.

B. Detection Performance
We accomplish the detection task by separately monitor-
ing these filters over time according to the probability
summation model formalized by Watson.37,38 A detection
response occurs when the instantaneous response of ei-
ther filter is above some independently noise-perturbed
criterion level for each filter. The noise can be consid-
ered to be introduced to the response signals themselves
or, equivalently, to the criterion level. This fluctuation is
also considered to be sufficiently rapid that the noise is
statistically independent from instant to instant. Fur-
ther, assuming that the probability associated with a de-
tection outcome as a function of absolute filter response
follows a Weibull distribution, one can make calculations
to determine the contrast at which stimulus detection oc-
curs, incorporating the effects of probability summation
over time and over the two independent filters.
Formally, it is assumed that the probability of detec-

tion that is due to filter i at any one instant of time t is
given by a Weibull function:

pi~t ! 5 1–2 ~2uRi~t !u
b!. (6)

A common parameter b is assigned for all filters in mod-
eling a particular data set. This homogeneity condition
reduces the number of free parameters in the model and
furthermore is justified because there is no evidence in
our data for a systematic change in b (detection psycho-
metric function slope) as a function of temporal fre-
quency.
Over the period of time from which the impulse re-

sponse is initiated by the stimulus (Tstart) until the re-
sponse decays completely (Tend) the total probability of
each filter response Ri being detected is given by

Pi 5 1–2 @2*
Tstart

Tend uRi~t !u
bdt#. (7)

Given the independence of filter outputs RA and RB , the
total probability for detection of either response is

PDet 5 1 2 ~1 2 PA!~1 2 PB!

5 1–2 @2*
Tstart

Tend ~ uRAub 1 uRBub!dt#. (8)

Thus PDet represents the total probability of detection.
However, when the probability of correct performance
(PC) is measured in a 2-IFC task, these probabilities are
related by the relationship PC 5 0.5 1 0.5PDet . Taking
the 75% level of performance to define the psychophysical
threshold, we require that

1 5 E
Tstart

Tend
~ uRAub 1 uRBub!dt. (9)

This expression can be solved analytically for the contrast
level at which performance is likely to reach the 75% per-
formance level:

Cthr 5 H E
Tstart

Tend
@ ug~t, f ! * hA~t !ub

1 ug~t, f ! * hB~t !ub#dtJ 21/b

. (10)

In practice, however, a numerical solution to Eq. (10) is
sought to model contrast threshold detection perfor-
mance.

C. Identification Performance
In this subsection we model how one uses the responses
among the filters to determine identification performance.
The first requirement is to select a metric translating the
filter output over time into a single output measure. A
minimal requirement is that this metric be a monotoni-
cally increasing function of stimulus contrast. We used a
squaring of the peak filter response to represent an accel-
erating nonlinearity. This choice provided a better fit to
the data than a simple linear transform in all cases and is
a feature of models that predict increment contrast dis-
crimination data.39,40 Because the filter responses are in-
dependent, they can be represented in orthogonal direc-
tions in a perceptual space, as shown in Fig. 8. The filled
squares indicate the squared peak responses of the two
filters at detection threshold. The straight lines radiat-
ing from the origin correspond to the ratio of transduced
filter outputs for our stimuli at the temporal frequencies
indicated. When the transductions of the two filter re-
sponses are identical (in this case both are squared peak
responses) this ratio is constant, resulting in a contrast-
invariant measure of each temporal frequency. Follow-
ing general line element and signal detection theory, each
point in Fig. 8 corresponds to a perceptual state, and
points close together are more likely to be confused than
points farther apart. In our model we propose a zone of
confusion in this space (depicted by the shaded circle)
that describes the boundary between perceptual events
likely to be confused and those that are reliably distin-
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guished. For simplicity we take this zone to be circular
with a constant radius D (i.e., the zone is invariant on
translation and rotation within this space).
The 2 3 2-IFC task used here does not allow for simul-

taneous comparison of points in this space. We must
therefore postulate that this space provides a map in
memory onto which we lay down an internal representa-
tion of each temporal frequency, given by a straight line
through the origin, so sequentially presented stimuli can
be compared. In Fig. 8 the straight line labeled 8 Hz rep-
resents the pattern of filter responses that is due to an
8-Hz stimulus, regardless of contrast. Given the confu-
sion zone depicted by the shaded circle, the open square
labeled C denotes the smallest contrast of a 4-Hz stimulus
that is reliably distinguished from the 8-Hz internal rep-
resentation. The factor by which contrast must be raised
above detection threshold to yield 75% correct identifica-
tion corresponds to the factor alpha measured in the psy-
chophysical task. At this contrast level (C) the 4-Hz
stimulus will remain confused with the 2-Hz representa-
tion but will be distinguished from the 1-Hz representa-
tion. This model also predicts that, as contrast in-
creases, TF identification becomes more reliable, as is
generally observed.
This output space also provides for a degree of asym-

metrical performance in identifying pairs of stimuli. For
example, consider the task of identifying whether a 1- or a
2-Hz stimulus is presented in a trial; we assume that the

Fig. 8. Representation of internal space governed by the trans-
duced output of the two basis filters. The thick curve indicates
the squared peak responses of model filters A and B at detection
threshold; the filled squares show this condition at the temporal
frequencies indicated. Refer to the text for further details.
observer has practiced and is familiar with both stimulus
types. Further suppose (as shown by the two small open
circles in Fig. 8) that the zone of confusion is just large
enough that the 2-Hz stimulus at detection threshold is
just reliably distinguished from the 1-Hz internal repre-
sentation; i.e., the value of D equals the radius of a circle
centered on the 2-Hz detection point, which just grazes
the 1-Hz line. Thus we predict accurate identification of
the 2-Hz stimulus at detection threshold. The same zone
of confusion centered on the 1-Hz stimulus, however, cuts
across the 2-Hz representation line, and so we predict
that reciprocal accurate identification will not ensue for
the 1-Hz case. Asymmetries such as these are observed
in the data, even after correction for bias as described in
Subsection 2.C.3.

D. Fitting the Model
The adjustable parameters of the model are the overall
sensitivity factors of the two filters (AA and AB), the val-
ues of t and s that together control the shape of the im-
pulse responses, the psychometric function slope param-
eter b, and the size of the confusion zone D. In practice
the psychometric function slope parameter was set to the
mean of that measured for each observer’s detection per-
formance, leaving only five free parameters to be con-
strained by the detection thresholds (measured at six
temporal frequencies) and the alpha factors (for 30 com-
binations of those temporal frequencies). Another funda-
mental choice to be made concerning the model is which
pair of adjacent derivative log Gaussian filters to use. By
calculating the best resulting fits, using all combinations
of filter functions, we found that the optimal fit was al-
ways afforded to the RG data when the generator and the
first derivative of the log Gaussian temporal impulse were
used, and for the achromatic condition when the first and
the second log Gaussian derivatives were used. That is,
for modeling the RG data h0 and h1 were used, whereas
for the achromatic data h1 and h2 were used.
The free model parameters were iteratively adjusted by

Powell’s method39 to minimize the total chi-squared sta-
tistic for both the detection and the identification data si-
multaneously. As the model uses 5 free parameters to fit
36 data points, there are 31 degrees of freedom associated
with the model fit for each observer and cardinal stimulus
condition. The best-fitting model parameters and the
least chi-squared values that resulted from the detection
and the identification data for each fit are given in Table
1, and the outcomes are shown graphically in Fig. 3 and
Table 1. The Best-Fitting Parameters and the Least Chi-Squared Values Resulting from the Model Fit to
the Detection and TF Identification Dataa

Stimulus Observer
Mean b

(measured)

Best-Fitting Model Parameters Least Chi Square

Qt s AA AB D Det. Ident. Total

Achromatic ABM 3.97 0.0736 0.7446 4.213 8.120 0.0798 1.79 54.33 56.11 2.65 3 1023

Achromatic KTM 5.08 0.0831 0.5503 9.602 20.38 0.0901 1.77 43.83 45.60 3.39 3 1022

RG ABM 3.14 0.0815 0.8262 12.69 10.06 0.1151 5.22 89.52 94.74 1.24 3 1028

RG KTM 4.13 0.0931 0.8065 21.88 16.29 0.1213 2.46 82.69 85.15 3.51 3 1027

aThe b values used in the model were derived from the detection psychometric functions and were not varied in the least-chi-squared fitting procedure.
For modeling the RG data filters h0 and h1 were used, whereas for the achromatic data h1 and h2 were used.
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Figs. 4–7, respectively. Q in Table 1 indicates the prob-
ability that, if the model is true, the observed data vary
from the model predictions as a matter of chance.41 The
low values of Q indicate that the model does not account
for all the variance in the data and that there is room for
improvement in the model performance. Nevertheless,
the fitted model does afford an excellent account for the
detection data in all instances and also provides a quali-
tative account of the TF identification data, incorporating
the essential observation that different TF’s can be iden-
tified correctly near detection thresholds and that su-
prathreshold contrasts are required for accurate classifi-
cation of closer TF’s. Because the present model is at
best statistically qualitative, estimates of the errors asso-
ciated with the best-fitting parameters are not given in
Table 1.
As mentioned above, the model performance was im-

proved in all cases when a squaring transducer was ap-
plied to the peak responses than in the case of a simple
linear transduction. Allowing this power transducer
function to vary freely afforded slightly better fits to the
data but, in addition to its adding extra parameters, the
transducer power parameter was highly codependent on
the value of D, suggesting these data do not lend them-
selves to constraining the form of filter response trans-
duction into the internal space defined above. Other
types of experiment such as contrast masking are re-
quired for a fuller understanding of this transduction as-
pect of the filter responses, which, as discussed below, af-
fects the modeled contrast invariance of subsequent speed
perception.

5. DISCUSSION
The results clearly show that stimulus identification can
be made solely on the basis of TF content for both RG
isoluminant and achromatic defined stimuli. This was
shown to be true at contrast levels close to threshold, and
we also observed that, as contrast increases, TF identifi-
cation becomes more reliable. From these results we dis-
miss the notion that the RG mechanism depends on a
single univariant temporal filter and instead infer that
(like the achromatic channel) the RG channel must em-
body more than one TF filter to allow the discrimination
performance to be observed. The model framework that
we have adopted allows us also to propose the likely
shapes of the temporal IRF’s that subserve RG and
achromatic function at low contrast levels.
This interpretation of the data necessarily rests on the

assumption that the isoluminant performance that we
measure is based on the operation of chromatic mecha-
nisms and not on the vestiges of some luminance re-
sponse, either of the type suggested to account for re-
sidual luminance flicker after color fusion in
heterochromatic flicker photometry42 or that which is due
to the frequency-doubled responses of magnocellular-
projecting retinal ganglion cells.43 To investigate this
possibility, and to determine whether thresholds are in-
deed mediated by chromatic mechanisms, we performed
further experiments examining the chromatic nature of
the threshold percept for our stimuli.44
We suppose that, if chromatic mechanisms are in-
volved, stimuli should appear distinctly chromatic (alter-
nately red and green) at detection threshold. In a
method completely analogous to the TF identification pro-
cedure described above we determined color identification
performance by using threshold level nominally isolumi-
nant stimuli randomly intermixed with similar threshold
level achromatic stimuli. If an intruding luminance
mechanism mediates detection for both achromatic and
nominally isoluminant stimuli, then correct identification
performance would not closely follow detection perfor-
mance but would become possible only when a chromatic
mechanism’s response finally became significant, if at all.
We performed this test for both observers at a sample

of frequencies in our TF range (2, 8, and 22.6 Hz) and
found that in all cases color-identification performance
closely followed detection performance, even at high tem-
poral frequencies. Average separations (6 estimated
SD) of detection and identification psychometric functions
were for observer KTM: 0.024 6 0.048, 0.040 6 0.042,
and 0.078 6 0.028 log10 unit, and for observer ABM:
0.033 6 0.054, 0.018 6 0.059, and 0.042 6 0.045 log10
unit, for 2, 8, and 22.6 Hz, respectively. These very small
differences in detection and identification thresholds give
us confidence that chromatic mechanisms mediated per-
formance for our isoluminant stimuli.

A. Achromatic Impulse Response Functions
The similarity of the achromatic detection and identifica-
tion data measured for both observers is reflected in the
similarity of the best-fitting temporal IRF’s resulting
from the model, as shown in Fig. 3 and in Table 1. Filter
h1 has a biphasic IRF, resulting in a MTF that peaks be-
tween 4 and 5 Hz. The low-frequency limb of this func-
tion has a much shallower sensitivity decline than the
high TF limb, but it still remains clearly bandpass. Fil-
ter h2 has a triphasic IRF, but it should be noted that the
secondary positive part of this function is small compared
with the initial positive portion, although it does extend
in time to just beyond 250 ms. The resulting MTF of this
filter is distinctly bandpass in shape and peaks at ;8 Hz.
The crossover point in sensitivity for the underlying

achromatic filters occurs at ;4 Hz in both subjects, in ac-
cordance with the results of Thompson8 inferred from su-
prathreshold velocity-discrimination experiments at a
range of spatial frequencies. At the crossover TF we
would expect best sensitivity to small changes in TF, and
therefore the most accurate TF identification should be
centered about this frequency, as is observed in the data.
Indeed, both subjects could accurately identify 8-Hz or
faster stimuli as well as 2-Hz or slower stimuli at or very
close to detection threshold when these stimuli were
paired with 4-Hz achromatic stimuli (see panels for 4 Hz
in Figs. 4 and 5). According to the labeled line high-
threshold model7 used previously to interpret this class of
data, this level of categorization along the TF dimension
would constitute evidence for three separate TF-tuned fil-
ters operating at detection threshold levels. Using the
same procedure as ours, Mandler and Makous10 found
that at least one observer viewing a uniform 1° field was
able to identify three distinct TF’s (1, 4, and 45 Hz) at de-
tection threshold and that, in general, identification im-
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proved with increasing TF separation.10 Similarly, using
0.2-cycle/degree achromatic gratings, Hess and Plant12

also found three steps in TF classification at detection
threshold (0, 4, and 32 Hz).12 Both of these investiga-
tions used the labeled line high-threshold model of Wat-
son and Robson7 to conclude that at least three filters
were in operation and modeled their data accordingly.
On the other hand, the model used here embodies a dif-
ferent approach based on signal detection, whereby the
output of a filter that itself does not determine the detec-
tion response still provides useful information for a sepa-
rately determined decision concerning signal identifica-
tion. Thus identification, even at detection threshold, is
based on a combination of filter outputs. Furthermore,
the high-threshold model does not readily account for the
observation found in all data sets that identification per-
formance improves with increasing contrast, whereas this
feature of the results arises naturally from the framework
of the present model. Because of these differences in un-
derlying theory, we can model our data, which comprise
three discrete categorical steps of TF at detection thresh-
old, by using the output of only two independent filters.
These filters are compatible in shape with those derived
psychophysically with masking procedures.11,13

B. Red–Green Chromatic Impulse Response Functions
Despite the observation that chromatic TF identification
performance was mostly better for observer KTM than for
observer ABM, Fig. 4 shows that the inferred underlying
IRF’s derived by the model are consistent between the ob-
servers. For both subjects the inferred filter h0 has a
monophasic IRF peaking at 81–93 ms after stimulus on-
set, gradually decaying over ;450 ms. This results in a
low-pass MTF that would have a maximum acuity of ;22
Hz if high chromatic contrasts could be generated to drive
it this fast. Filter h1 has a biphasic IRF, which peaks at
38–44 ms, crosses zero at 81–93 ms, and slowly decays af-
ter ;350 ms, resulting in a bandpass MTF with maxi-
mum sensitivity at 3–4 Hz. The shallow negative lobe of
this filter’s IRF reaches a minimum at 125–145 ms. Al-
though filter h1 has a bandpass MTF, because of the
greater sensitivity of h0 the overall sensitivity profile of
the RG mechanism remains low pass. The crossover
point in sensitivity for the underlying RG filters is at ;5
Hz for both observers, as expected given the identification
data in Figs. 7 and 8 from which the model is derived.
It is interesting to note that the properties of the in-

ferred biphasic chromatic IRF are similar to those re-
ported by Eskew et al.,5 who used a double-pulse proce-
dure. Also, the h0 IRF is similar in general shape but
peaks at a time intermediate between that of the
monophasic IRF’s reported by Uchikawa and Ikeda2 and
that of Burr and Morrone4 which had maxima at ;55 and
;120 ms, respectively. The peak times of the monopha-
sic chromatic IRF’s computed by Swanson et al.1 varied
according to background adaptation level, a factor that
could be responsible for the differences in the IRF shapes
determined by these other studies. The biphasic IRF re-
ported by Swanson et al.1 at 900 Td does not resemble the
biphasic IRF inferred from the data and the model pre-
sented here. As noted above, these previous studies all
reported the action of a single temporal filter under any
experimental condition, a situation that is untenable ac-
cording to the thesis of this paper. It would be interest-
ing to ascertain what filter shapes would be modeled from
these pulse detection data under the assumption that
more than one filter were operable.

C. Red–Green and Achromatic Speed Computations
Using our model framework, we can suggest how differ-
ences in the inferred RG and achromatic front-end tempo-
ral filters can provide a link to understanding differences
in chromatic and achromatic speed perception. There is
considerable psychophysical evidence that both chromatic
and achromatic information is combined in a common
motion-processing stage at some level in the visual sys-
tem. This is supported by observations that adding color
to an achromatic stimulus slows it down, whereas adding
luminance contrast to an isoluminant chromatic grating
speeds it up,27,45 and that motion aftereffects induced by
isoluminant chromatic motion can be transferred to and
nulled by achromatic motion and vice versa.46–48

If we consider the outputs for the RG and achromatic
filters to be measured and compared in the same filter
output space, then this model can provide an explanation
for the phenomenological differences reported between
chromatic and achromatic motion perception. In the rep-
resentation of internal space shown in Fig. 8 the ratio of
filter outputs, or equivalently the angle in this space,
uniquely encodes each stimulus along the TF dimension
independently of contrast. Using the angle in a common
internal space as a measure of stimulus speed, we illus-
trate in Fig. 9 how higher chromatic TF’s are consistently
required to derive the same speed signal as a slower ach-
romatic stimulus for observer KTM. The speed predic-
tions of this model can be directly compared with the re-
sults of an earlier published report of measured velocity
matching performed for isoluminant RG gratings by the
same observer.32 There it was shown that, although per-
ception of smooth motion was restricted to high chromatic
contrasts, a 0.3-cycle/degree RG grating drifting at 3.2 Hz
was velocity matched with an achromatic grating drifting

Fig. 9. Speed signal as determined by the ratio of underlying
filter outputs for RG and achromatic (Ach) stimuli derived for ob-
server KTM. Higher chromatic TF’s are required for the same
speed signal as for a slower achromatic stimulus, assuming a
common internal response space.
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at ;2 Hz, whereas a 1.6-Hz RG grating appeared to drift
at an equivalent achromatic speed of 0.7–1.1 Hz. These
speed comparisons are in good agreement with the predic-
tions shown in Fig. 9, although it should also be noted
that the Mullen–Boulton study,33 along with others,45–49

also reported that chromatic speed perception, especially
at low speeds, is not contrast independent near threshold,
signifying an important failure of our model.
Likewise, it is well established that achromatic velocity

perception is also not strictly contrast invariant near de-
tection threshold.17,45,49,50 However, simple adjustments
to the model can be made to incorporate these phenom-
ena: Within both the RG and the achromatic channel
the property of contrast-invariant TF coding is a direct re-
sult of identical transduction for both temporal filters.
One can thus address the failure of the model by consid-
ering different nonlinear transducers for each of the two
underlying filters. For stimuli to be more readily per-
ceived as slower than they really are it is required that
the power exponent related to the low TF filter be smaller
than that for the higher TF filter. However, as we have
seen, the types of experimental data reported here are not
able to constrain adequately this important aspect of the
model. Future experiments using contrast masking
paradigms are planned to address this issue and to fur-
ther develop the model.
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