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A major determinant of human texture segregation and discrimination is the orientational content 
of the stimuli ~used. We have investigated the ability of observers to resolve features defined in the 
orientation domain in a variety of textures. It was found that features had to be separated by at least 
13 deg for subjects to discriminate orientationally bimodal textures from same-variance unimodal 
textures. For larger separations, the determinant of performance was the magnitude of the central 
"dip" in the probability density functions determining the bimodal textures. Resolution 
performance can be modelled by assuming that a filtering process over orientation demodulates 
the central dip in the bimodal texture and that discrimination depends on criterion depth in the 
resulting function. Such modelling produces relatively broad estimates of the bandwidth ranging 
from about 10-20 deg. Performance was similar for both line and Gabor micropattern stimuli. 
© 1997 Elsevier Science Ltd 
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INTRODUCTION 

The textural content of an image region is a cue that the 
visual system can use for segmentation and identification 
(Beck, 1966; Julesz, 1962), as well as surface orientation 
estimation (Gibson, 1950). It is widely believed that the 
orientational properties of a texture are particularly 
important in this regard (Beck et al., 1983). The majority 
of recent models (e.g. Landy & Bergen, 1991; Malik & 
Perona, 1990; Graham et al., 1992) of human texture 
perception use arrays of oriented filters as their input 
stage, in accord with the known ubiquity of orientation- 
ally selective neurons in V1 (Hubel & Wiesel, 1959). 
Thus, it is important to understand how good the visual 
system is at detecting differences in the orientational 
content of  textures, for such knowledge places constraints 
upon possible models of texture processing. 

We have previously shown that human performance in 
the discrimination of textures with threshold non-random 
orientational content irom orientationally random (iso- 
tropic) textures can be', modelled well by assuming that 
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the visual system has access to the output of a global 
filtering operation over orientation (Keeble et al., 1995a, 
b). The filter that emerged from the modelling process 
was broad, having an average half-height full-width of 
34 deg. These experiments were essentially concerned 
with the detection of any kind of non-random orienta- 
tional content, where the content could be multimodal 
in the orientational domain. This loosely corresponds to 
the concept of contrast sensitivity in the luminance 
domain (Campbell & Robson, 1968). A related but 
distinct issue is the question of how good observers are at 
discriminating between textures with different kinds of 
orientationally supra-threshold content. That is, if a 
texture clearly contains one or more dominant directions, 
how well can we assess the properties of the orientational 
content? 

A fundamental capability of the visual system across 
several domains is that of resolution, or the ability to 
decide whether there is one feature or many in some 
image region, and the level of performance in distin- 
guishing two spots of light from one spot of light is 
perhaps the paradigmatic example of a resolution task. 
The standard measures of acuity used by optometrists, 
such as the Snellen eye chart, Landolt C-ring etc. are also 
examples of resolution tasks, as they are based on 
performance in distinguishing proximate spatial features. 
A measure termed the resolution limit or limiting 
frequency has been used in vision science to quantify 
the resolving power of the human observer (Bennett & 
Rabbetts, 1984). This measure is essentially the spatial 
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frequency at which observers can only just detect a sine- 
wave grating at maximum contrast. Although it is 
possible to estimate an analogous textural resolution 
limit from our previous work (see Discussion), this 
estimate only relates to performance at threshold 
modulation. 

In order to assess the resolution capabilities of the 
texture mechanism of the human visual system we use an 
analogue of the two-line resolution task in the luminance 
domain (e.g. Levi & Klein, 1990). The task of the 
observer in that experiment is to distinguish two spatially 
proximate lines from just one line. In our experiment, 
observers must discriminate between textures comprising 
oriented micropatterns which are globally either orienta- 
tionally unimodal or bimodal. In other words, the task is 
to assess whether there are one or two dominant 
orientations in the texture. We control the orientational 
content by constructing the textures with micropatterns 
(lines or Gabor patches), with orientations drawn from 
probability density functions (pdfs), defined over orienta- 
tion, as in our previous work (Keeble et al., 1995a, b). 
The pdfs could either be Gaussian in form (unimodal), or 
be two Gaussians added together but with peaks at 
different angles (bimodal). In the limit, as the standard 
deviations of these sum-of-offset-Gaussians (SOOG) 
pdfs approach zero the texture will comprise lines with 
just two orientations. An example of a SOOG pdf is 
shown in Fig. 1. Using this flexible way of defining the 
bimodal texture allows us to assess resolution perfor- 
mance with different ranges of orientation (i.e. orienta- 
tion variance) in the stimulus, and different angular 
separations between the orientation maxima. We ensure 
that we are employing a genuine resolution task, and not 
just a variance discrimination task, by matching the 
orientation variance between the bimodal texture and the 
unimodal comparison texture. 

These experiments address a number of specific issues. 
Is it possible to model resolution performance using a 
linear filtering operation over orientation, as proved 
possible for the detection of textural anisotropy (Keeble 
et al., 1995a, b)? If so, will the filter be of a similar width? 
What will be the relevant parameters of the bimodal pdf 
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FIGURE 1. The pdf of a SOOG. The depth of the central dip (D) and 
the angular separation between the peaks (d) are shown. 

for performance? What is the absolute limit of resolution 
performance in the optimal stimulus? How does the 
nature of the oriented micropatterns affect performance? 
The main result of this paper is to show that simple linear 
modelling can account for the data well, assuming that 
the relevant feature is the amplitude of the "dip" in the 
middle of the bimodal distribution. 

METHODS 

The methods used to conduct this experiment were in 
general similar to those used in Keeble et al. (1995a, b), 
so we present an abbreviated description here. 

Display 

Stimuli were produced with the use of Apple 
Macintosh computers (Ilcx and Quadra 650) and were 
displayed on two different Macintosh 13" colour dis- 
plays, each of which was appropriately gamma-corrected. 
The stimuli consisted of arrays of anti-aliased bright 
white lines on a dark background, or arrays of Gabor 
patches on a grey background. Gabor patches are 
sinusoidal gratings isotropically windowed by a Gaussian 
function. The patches we used were in cosine phase, and 
the ratio of the amplitude of the underlying sinusoid to 
the mean luminance of the screen about which it 
modulates was 0.98. The mean luminance was 
48 cd m -2. The standard deviation of the sinusoid was 
8.8 min arc of visual angle, and three different peak 
frequencies, 2.0, 4.1 and 8.2c deg -1, were used. The 
length of the lines was 33 min arc and their width was 
2.2minarc. Pixel resolution at the 57cm viewing 
distance was 27.2 pixels deg -1. The experiments were 
performed under room lighting. Two durations of 
stimulus exposure were used for most of the experiments: 
105 msec and 1000msec. Detailed inspection of the 
stimuli was prevented by the shorter duration, and the 
longer duration allowed us to investigate how resolution 
performance improved with time. At the longer duration 
subjects were allowed to make eye movements, if they 
wished. 

Stimuli and procedure 

A two-alternative-forced-choice (2AFC) task was 
used. Two spatially adjacent texture arrays were shown 
to the subjects. One array was orientationally bimodal, 
whilst the other was orientationally unimodal. Subjects 
were required to select the array that was bimodal. 
Feedback for incorrect responses was provided in the 
form of a beep. Equal numbers of presentations had the 
bimodal array on each side. Examples of the stimuli used, 
together with the pdfs used to generate them are shown in 
Figs 2 and 3. 

Each array was 10.6 x 10.6 deg in size, the two arrays 
being horizontally separated by 44 min arc. In Experi- 
ments 1 and 2 there were 500 randomly positioned lines 
in each of the two arrays, whereas in Experiment 3 there 
were 196 micropatterns positioned on a 14x 14 grid 
with uniform random positional jitter between 
±13.2 min arc added in each dimension to hinder the 
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occurrence of collinear structures. Grid stimuli were 
utilised so as to prevent the Gabor patches overlapping, 
which would have reduced contrast and thus the visibility 
and salience of the stimuli that would have been possible 
to use. This is because the contrasts of overlapping Gabor 
patches are combined additively. When line stimuli 
overlapped the pixel luminances at the intersection were 
not added. 

In Experiment 1, on each presentation the bimodal pdf 
was a sum of offset Gaussians (SOOG). By "offset", we 
mean that the maxima of the Gaussians were separated by 
an angle that we shall refer to as "d". The comparison 
unimodal pdf was Gaussian. We used the angular 
separation of the peaks in the SOOG, d, as the 
independent variable for each psychometric function, 
by analogy with the luminance domain, where resolution, 
or acuity, is generally naeasured as a function of either the 
separation between ,;patial features, or the spatial 
frequency (Bennett & Rabbetts, 1984). It became obvious 
in trial observations that if the standard deviation of the 
unimodal distribution, at:, and the individual Gaussians, 
aG, in the SOOG were kept constant then the concomitant 
difference between the overall orientational variances of 
the two arrays became an extremely powerful cue. In a 
similar task, Dakin (1994) has shown that subject 
performance is predicted extremely well by a variance 
discrimination model, fin order to prevent the experiment 
from being an orientation variance discrimination task, 
and thus to ensure that it was a genuine test of resolution 
ability, we required that on each trial the orientational 
standard deviation be the same for the unimodal and 
bimodal pdfs. Thus, as d increased the standard deviation 
of the underlying Gaussians of the SOOG was decreased, 
in order to keep the overall standard deviation of the pdf 
constant. In Experiment 1, where SOOGs were used, the 
orientational variance over each psychometric function 
was thus constant. Figure 2 shows two examples of these 
stimuli and their corresponding pdfs at different standard 
deviations. 

In Experiments 2 and 3 the bimodal distribution was 
just two discrete orientations--that is, the pdf was a 
normalized sum of two impulse functions. In this case the 
comparison pdf was again Gaussian, but here increasing 
d in the bimodal pdf increases the standard deviation, so 
the standard deviation of the Gaussian must be increased 
to match. Examples of these stimuli for different spatial 
arrangements of the lines and for different micropatterns 
are displayed in Fig. 3. 

Although the example stimuli shown each have mean 
orientations which are vertical, in the actual stimuli the 
orientational phase of the pdfs was random from trial to 
trial. This arrangement ensures that subjects cannot 
perform the task by atllending to the orientation strength 
in one prespecified diirection. In a given stimulus the 
mean orientations of the unimodal and bimodal arrays 
were the same. It should be noted that in Experiment 1, in 
particular, the use of continuous pdfs (i.e. the existence of 
a range of orientations), means that the task must be 
achieved by some spatially integrative mechanism, 

taking information from many first-order units, rendering 
this a true texture task, and not simply by a local detection 
of orientation properties (i.e. just using the information 
from a couple of micropatterns). 

In each experiment the percent correct was plotted as a 
function of the angular distance, d, between the maxima 
of the pdf for the bimodal texture. In Experiment 1, six 
equispaced values of d were used, with appropriate 
values being determined by pilot experiments. It should 
be pointed out that in this case values of d have a 
maximum permissible value of twice the overall standard 
deviation of the orientations in either of the arrays. This is 
because in the limit as d increases the individual 
Gaussians in the SOOG go to impulse functions as the 
bimodal pdf changes shape in order to keep the 
orientational variance constant. Beyond this point d 
cannot increase without producing a corresponding 
increase in the standard deviation, thus violating the 
previously discussed requirement of equal variance 
between the bimodal and unimodal pdfs in a given 
stimulus. In passing, we note that the overall standard 
deviation of a SOOG, asoor, is given by: 

~sooc = V/(a 2 + d2/4), (1) 

where aG is the standard deviation of the component 
Gaussians, and d is the offset between the peaks. All 
the different standard deviation conditions were run 
together in the same block for this experiment, with 
different exposure durations being in different blocks. In 
Experiments 2 and 3, eight equispaced values of d from 
5 to 40 deg were used for each psychometric function. 
Different micropatteru, spatial arrangement of micro- 
patterns (i.e. random or grid) and duration conditions 
were run in different blocks. In all experiments 40 
observations were collected for each point on the 
psychometric function. The sole exception to this was 
observer FK in Experiment 3, where we took 120 
observations per data point in order to verify that the 
small decrease in threshold between 4.1 and 8.2 c deg -1 
in the 1000 msec condition was real. For Experiment 1, 
observers DK and FK collected the data in 10 separate 
blocks for each duration condition, whereas PL spread 
the collection over 20 blocks. The data for each condition 
for the other experiments was taken in two blocks, except 
for the above mentioned exception, which was taken in 
six blocks. The subjects all performed at least one 
practice block for every condition and experiment in 
order to familiarize themselves with the task. 

Weibull functions (Weibull, 1951) were fitted to the 
psychometric functions. These are given by: 

P ( d )  = 1 - l e x p [ - ( d / a ) ~ ] ,  (2) 

where a is a threshold parameter (corresponding to the 
82% correct point), fl is the slope parameter and d is the 
separation between the peaks. For all our data we take a 
as the threshold. The fitting was done by a maximum 
likelihood method which produced 67% confidence 
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FIGURE 2(a). Caption on facing page. 

O r i e n t a t i o n  

intervals and a Z 2 criterion for acceptance or rejection of 
the fit at the P < 0.05 level. Thresholds were discarded in 
Experiment 1 if  they corresponded to mathematically 
impossible stimuli, i.e. if  threshold d was larger than was 
possible to produce for a SOOG at this overall variance. 

Otherwise, only two psychometric functions in Experi- 
ment 1 failed the goodness-of-fit test. These were for PL 
at 105 msec, and D K  at 1000 msec, both at standard 
deviations of  25 deg. Two failures of a 95% test out of 37 
data points is about what one would expect by chance, 
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S t a n d a r d  D e v i a t i o n  = 35  ° 

P D F  P D F  

- 9 0  ° 0 o 90  ° -90  ° 0 o 90  ° 

O r i e n t a t i o n  O r i e n t a t i o n  

FIGURE 2. Two examples of the SOOG stimuli used in Experiment 1, together with their generating pdfs. In (a) the overall 
standard deviation is 15 deg, whilst in (b) it is 35 deg. 

and the thresholds prod~aced by these data points are very 
much in accord with the pattern of  change of threshold 
with orientation variance, so we have chosen to plot these 
two values and inchtde them in the analysis and 
modelling in the next section. 

Subjects 
Three subjects performed these experiments. Two (DK 

and FK) were authors, and the third (PL) was a graduate 
student. All subjects were experienced psychophysical 
observers. 
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FIGURE 3(a,b). Caption on facing page. 

RESULTS AND ANALYSIS 

Exper iment  1 - -Reso lu t ion  as a func t ion  o f  orientation 
variance 

In Experiment 1 the ability of  observers to resolve 
textural features at varying overall orientational var- 
iances is measured. I f  there is some fundamental limit to 

orientational resolution, it should manifest itself to a 
different extent over different ranges of  orientation. Each 
threshold is the angular separation, d, between the 
maxima of the SOOG at which criterion performance is 
achieved. The results for three observers are plotted in 
Fig. 4. Not surprisingly, as the overall variance increases 
the separation between the peaks required to do the task 
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FIGURE 3. Examples of the two discrete orientation stimuli used in Experiments 2 and 3. In each case the overall orientational 
standard deviation is 10 deg. (a) The lines are placed randomly. (b) Gabor micropattems of peak spatial frequency 4.1 c deg -l  

are placed on a jittered grid. (c) Line elements are placed on a jittered grid. 

increases.  This  increase  is approx ima te ly  l inear.  I t  should  
be born  in mind,  however ,  that  the thresholds  are 
e f fec t ive ly  cons t ra ined  to fal l  wi thin the straight  l ines 

shown in the diagram.  The  upper  l ine (d = 2aSOOG = 2trtr) 
cor responds  to the peak  separat ion at which  the b imoda l  
dis t r ibut ion is two impulse  functions,  i.e. the ma x ima l  
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FIGURE 4. Threshold peak separation for resolution performance as a function of overall orientation standard deviation for 
Experiment 1. See text for explanation of the upper and lower limiting lines. 

separation possible when the bimodal and unimodal 
variances are constrained to be the same. This follows 
from equation (1). On the other hand, the lower line 
(d = ~ = ~ )  is the separation between the 
individual Gaussians where the central dip in the pdf 
disappears. We note that at the lowest standard deviations 
it was not possible to obtain thresholds, as evidenced by 
the way the data meets the d = 2asoo6 line at low trsooc 
in each case. It is conceivable, but not likely, that 
discrimination could occur between two unimodal pdfs 
with the same variance and similar shapes, but evidently 
this is not possible in this case. So it is clear that although 
plotting the data in this fashion shows that the task is 
possible under these conditions, it is compressing the 
possible data space into a wedge-shaped region. This 
compression makes it difficult to evaluate different 
models for the subjects' performance. Levi and Klein 

(1990) found a similar linear relation at high standard 
deviations in their two-bar luminance resolution experi- 
ment. Because they had no equivalent to our equal 
variance constraint, however, they were able to evaluate 
thresholds at small standard deviations, allowing them to 
find a fiat region of the curve. Whatever the merits of  this 
approach in the luminance domain, it was clear from our 
pilot observations that relaxation of the equal variance 
constraint would have rendered the bimodality of  the 
stimulus irrelevant to the task. 

Because this conventional manner of plotting the 
results proved not to be particularly enlightening, we 
sought another metric more directly related to the 
bimodality of the stimulus, which is illustrated in Fig. 
1. Instead of taking the separation between the peaks, we 
evaluated the depth, D, of the pdf. For each orientational 
variance we took the pdfs at threshold performance, and 
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evaluated the depth of the central dip. In this fashion we 
replot the results in Fig. 5. The errors bars shown are the 
mean transformed endpoints of the 67% confidence 
intervals of the threshold separations. There are two 
salient features of this representation of observer 
performance. First, as the orientational variance in- 
creases, depth, D, at threshold d becomes approximately 
constant. Second, at smaller values of trSOOG performance 
in terms of depth becomes very much worse--there is a 
sharp and sometimes catastrophic collapse in perfor- 
mance. This is presumably a consequence of a limitation 
in orientational resolving power. There is a minor 
anomaly in the data for PL at 1000 msec. Here there is 
an increase in the depth required once trSOOG is > 15 deg, 
but its magnitude is small compared to the magnitude 
needed at a trsooc of 10 deg. 

A simple mathematical description of the data, or 
model, is suggested by the prominent features of these 
results. We illustrate it in Fig. 6. The idea is that the 
visual system has sorae kind of internal blur over 
orientation which can be modelled as a Gaussian filter. 
The Gaussian filter is in the orientational domain and not 
the spatial domain. This is then convolved with the input 
representation of the stimulus over orientation--i.e, with 
the SOOG pdf. This will then demodulate the amplitude 
of the central dip to a greater or lesser extent, depending 
on the precise forms of these two functions. We then 
assume that threshold performance occurs at some 
criterion depth in  the output of the convolution. Thus, 
for each subject/duration combination we took the results 
for all the orientational standard deviations (i.e. aSOOG or 
au) and convolved the pdfs at threshold d with different 
widths of the Gaussian filter, trF, until we found the most 
consistent depth (in the sense defined below), in the 
output. This gives a standard deviation for the model 
filter and a criterion depth in the output. With these, it is 
then possible to go back and calculate what the depth at 
threshold would have be, en, assuming that the model was 
operating with those parameters. In Fig. 5 the predictions 
of the models are shown, along with the orientational 
standard deviations, o-F, of the appropriate model filter. 
This model is essentiaily the same as that used to 
understand the detectJ.on of orientation modulation 
(Keeble et  al., 1995a, b), except in that case the filter 
was obtained by a now~l use of Fourier analysis in the 
orientation domain, and did not have an exactly Gaussian 
form. 

Some technical details of the convolution process and 
model should be mentioned. Because the orientational 
domain is cyclical, the convolution integral should occur 
over rc radians, taking into account the wrap-around of 
one or other of the functions of the convolution. We did 
perform the integral over this range, but in general, 
because the SOOGs and the optimal filter were always 
reasonably compact with respect to the rc radians domain 
we assumed that both functions did not wrap around. We 
tested this approximation by doing the full calculation at 
selected extreme parameters, and found that it did not 
affect the model values of trF obtained. By "most 

consistent depth in the output" we mean that we 
minimize the quantity: 

N (Dmean - Di)2 

i=1 

where N is the number of thresholds obtained for that 
subject at that duration, Di is the depth of the dip in the 
convolution of the pdf at threshold with the filter, Dmean is 
the mean across N of those depths, and Erri is the 
difference between the convolved depths for the extrema 
of the 67% confidence intervals for the depth (i.e. an 
estimate of the appropriate error weighting for that data 
point). 

This model captures the main features of the data quite 
well, as can be seen in Fig. 5. The asymptotic behaviour 
at high crSOOG and the collapse at low O'SOOG are both 
reproduced. There appears to be a slight tendency for the 
model to underestimate the low O'SOOG fall-off in 
performance in three of the six data sets, possibly 
indicating that the model is not flexible enough to fit the 
sharpest collapses in resolution. Nevertheless, for a one- 
parameter fit to the data it would be unreasonable to 
expect the model to perform better. 

We now turn our attention to the half-height full-width 
orientational bandwidths (2.350"F) of the model filters 
emerging from the fitting process. They range from about 
10-20 deg, with an across-subject mean of 13.0 deg for 
the 1000 msec condition, and 17.6 deg for the 105 msec 
condition. On the one hand, this should be compared with 
orientational acuities for single lines and sine-wave 
gratings which are typically < 1 deg (Heeley & Bucha- 
nan-Smith, 1990). In a task where a field of Gahor 
patches with one orientation had to be segmented from a 
background of patches of a different orientation, Caelli 
and Moraglia (1985) found thresholds of 3-5 deg. So the 
mechanism that is at work in producing our results is 
obviously much coarser than those. On the other hand, 
when we performed similar experiments involving 
discrimination between orientationally random textures 
and orientationally modulated textures (Keeble et al., 
1995a, b), we found much broader filter bandwidths of, 
on average, 34 deg for the 1000 msec condition. What is 
more, Foster and Ward (1991), have modelled orienta- 
tional pop-out using orientational filters with a bandwidth 
of approximately 60 deg. It is clear that our results fall 
between these extremes. Interestingly, Graham et al. 
(1993), found that their model produced differing 
estimates of bandwidth for their simple channels (5- 
20 deg) and their complex channels (more than a factor of 
2 higher). The difference in our filter widths between the 
different exposure durations (a factor of 1.36) could be 
explicable by cognitive factors, by temporal probability 
summation, by changes in low-level filter characteristics 
with time, or by the evolution of grouping processes with 
time. 

In summary, the data are consistent with the view that 
the magnitude in the dip of the pdf convolved with a 
relatively broad filter is the determinant of performance 
in this task. Given that for fixed orientational variance the 
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FIGURE 5. Resolution thresholds in Experiment 1 expressed in terms of the depth of the bimodal SOOG, together with model 
fits (the thick lines), and associated model filter standard deviations (~rF). 

depth of the pdf varies non-linearly with the separation 
between the peaks, d, and that we found greatly differing 
values of fl for the fits in equation (2), replications of this 
kind of experiment should use depth as the abscissa 
variable of the psychometric functions. Attempts to 
analyse performance in terms of the relative depth of the 
SOOGs (the dip of the bimodal pdf divided by the peak 
height of the pdf), rather than the absolute depth did not 
prove fruitful. 

Experiment 2---An absolute resolution limit 

Using the experimental paradigm of Experiment 1 it 
was not easy to find a definitive limit to the orientational 
texture resolution of the visual system. We can say that 
when the overall standard deviation becomes < 10- 
15 deg it becomes impossible to measure thresholds for 
detecting bimodality, but it is not clear that we have used 
the optimal bimodal stimulus for eliciting maximal 

resolution performance. What one should attempt to do 
is give the observer their best opportunity for performing 
the discrimination task. In Experiment 2 we do this by 
just using two discrete orientations as the bimodal pdf. In 
other words, the pdf is simply two impulse functions. 
Again the comparison unimodal pdf is a variance- 
matched Gaussian. The angular distance between the 
impulse functions is varied, and the percent correct 
discrimination measured. Clearly, as the difference in 
orientation between the two angles increases perfor- 
mance will improve. This pdf, and the textures it 
generates are illustrated in Fig. 3. 

The psychometric functions for three observers at two 
durations are plotted in Fig. 7, along with the Weibull 
fitted thresholds. For one observer (DK) results were also 
taken for a duration of 2000 msec. Even for the longest 
durations a difference of at least 13 deg is required 
between the discrete orientations for 82% correct 
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In pilot experiments for other texture experiments using 
somewhat similar stimuli we independently manipulated 
the area of the stimuli and the micropattern density. At 
the density and area we use in the experiments reported 
here the performance had reached a plateau. The other 
plausible determinant of performance is the form of the 
micropatterns used. 

Experiment 3--Influence of the micropattern 

We use short line segments as micropatterns because 
they seem naturalistic to us. For example, images of 
vegetation generally include many more or less randomly 
positioned line elements and edges. Lines are broadband 
in the spatial frequency domain, which has the advantage 
that the diminution of orientational acuity with eccen- 
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performance. This is again completely different to 
the < 1 deg thresholds for single lines and gratings. 
Testing the model we deployed in Experiment 1 on this 
data is the logical and :straightforward next step. To do 
this, one takes the model filter Gaussians at the widths 
given in Fig. 5 and convolves them with two-impulse 
function pdfs with varying separations. The overall area 
of the pdf is unity, so each impulse function is normalized 
to have an area of a half. When the depth in the convolved 
function is that of the criterion depth for that subject and 
duration in Experiment 1 then that separation is the 
threshold prediction. Predictions and actual thresholds 
are plotted against each other in Fig. 8. They correspond 
reasonably well, althoulgh the threshold separations are, 
on average about 4 deg larger than predicted. This could 
be caused by the frequent undershoot in the model fit at 
low aSOOG in Fig. 5. 

This threshold of 13 deg implies that we are tapping a 
spatially integrative texture mechanism. Because there 
are only two orientations in the bimodal texture, and as 
the orientation of lines can be encoded to an accuracy of 
better than 1 deg near the fovea (M~ikel~i et al., 1993), a 
mechanism that simply sampled the orientations of a very 
small number of micropatterns in each array near the 
fovea with this accuracy would have a much lower 
threshold than was found. 

How "absolute" is this threshold of 13 deg? Or, to 
restate the question, are there parameters of the stimulus 
that could be adjusted to improve performance. It seems 
from DK's results that performance has reached asymp- 
tote at 1000 msec, so presumably yet longer durations 
would make little difference, unless the duration was so 
long as to allow an intensive serial search of the elements. 
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Performance is plotted as a function of the difference between the two 

discrete orientations. 
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against predicted thresholds from model and the results of Experiment 1. 

tricity is less than for narrow-band elements. On the other 
hand, the early stages of the primate striate cortex are 
spatial frequency selective, so many workers have argued 
that spatial vision psychophysics should be conducted 
using stimuli which are matched to this selectivity. This 
allows different spatial frequency mechanisms to be 
independently activated. A popular stimulus for this 
purpose is the so-called Gabor patch (e.g. Graham, 1989 
p. 47), which has a Gaussian profile in one direction, and 

in the orthogonal direction is a Gabor function--i.e, a 
Gaussian-windowed sinusoid. This function minimizes, 
in a certain sense, the joint spread of its position space 
and frequency space representations. It has also been 
claimed that it is a reasonable approximation to the 
receptive fields of striate neurons (Marcelja, 1980). We 
employ them because: (1) they are spatial frequency 
narrowband in comparison to line stimuli; and (2) 
because it is very simple to calculate and to vary their 
orientational bandwidth. If the spatial frequency content 
or the orientational bandwidth are important factors in 
this experiment then we would expect to see differences 
between the results using line elements and Gabor 
patches, and also between the results for Gabor patches 
of differing orientational bandwidths. 

In the experiments using Gabor patches, we placed 
them on a jittered grid as described in the Methods 
section and shown in Fig. 3(b). This is to allow high 
contrast values to be used. If random placement was used, 
lower contrasts would have to be used in order that the 
luminances of overlapping patches could be added 
without exceeding the limits of the colour table. In one 
series of experiments, the peak spatia~ frequency of the 
micropatterns was 4,1 c deg -1, the standard deviation of 
the Gaussian was 8.8 min arc, and thus the orientational 
half-height full-width bandwidth was 35.8 deg, calcu- 
lated using the approximation of Graham (Graham, 1989, 
p. 62). A control condition using line elements on a grid 
was also used, as depicted in Fig. 3(c). Otherwise, the 
experimental set-up was identical to Experiment 2 ~  
impulse function pdfs with percent correct being 
measured as a function of angular separation. The results 
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for these experiments can be seen in Fig. 9. In a separate 
experiment, the orientational bandwidth of the Gabors 
was varied by changing the peak spatial frequency (2.0, 
4.1 and 8.2cdeg-1),  whilst keeping the standard 
deviation of the Gaussian constant at 8.8 min arc. This 
produced orientational bandwidths of 71.6, 35.8 and 
17.9 deg. We show the thi'esholds for this manipulation in 
Fig. 10. 

There is virtually no difference between the psycho- 
metric functions for 35.8 deg bandwidth Gabor patch 
stimuli and line stimuli shown in Fig. 9. There is a 
noticeable reduction in performance by subject DK for 
the grid line condition at 105 msec. As this function 
seems to asymptote to 90% correct, and as the randomly 
placed line condition i,; almost identical to the Gabor 
condition, presumably this difference is some peculiarity 
of the grid stimulus. Evidently the form of the spatial 
frequency representation is not important in this texture 
task. It is important to stress how different these 
representations are for lines and Gabor patches. The 
Fourier transform of an idealized line is the product of 
two orthogonal sinc fimctions, with scales inversely 
related to the dimensions of the line. This will be an 
extended structure in frequency space which will have its 
maximum at the origin By contrast, the Fourier trans- 
form of a symmetrical Gabor patch will be a Gaussian 
blob centred at a point away from the origin of radial 
distance equal to the frequency of the sinusoidal carrier. 

In Fig. 10 the discrimination thresholds for stimuli 
comprising Gabor patches are plotted as a function of 
peak spatial frequency. As the size of the Gaussian is 
constant, orientational bandwidth is inversely propor- 
tional to spatial frequency, so the results would look 
similar if plotted against log orientational bandwidth. 
Two features are evident here: little change in perfor- 
mance between 4 and 8 c deg-1, and a large decrease at 
2 c deg -1. The orientat:ional bandwidth at 2 c deg -1 is 

71.6 deg, so this decline is not surprising and probably 
indicates that early stages of the visual system are not 
being given enough orientational information. In orienta- 
tional acuity experiments involving arrays of Gabor 
patches it was found that performance was approximately 
constant once the bandwidth was smaller than a certain 
value and that above this value performance collapsed 
dramatically (Demanins et al., 1996). The bandwidth at 
which collapse occurred was approximately 60-80 deg. 
Those results clearly parallel the ones presented here. 
Those kinds of results have been interpreted as indicating 
that orientation acuities are not just determined by 
oriented detector limitations but also by more central 
factors (Bowne, 1990; Burr & Wijesundra, 1991). Our 
results can be interpreted similarly. 

We mention some of the limitations of this experiment. 
Varying the spatial frequency of the Gabor micropatterns 
produces changes in their salience, even at high contrasts, 
and particularly at more eccentric positions. This is 
probably the reason for the small increase in threshold for 
subject DK going from 4 to 8 c deg -1. If the peak spatial 
frequency was increased still further it seems likely that 
performance would collapse. As texture stimuli are, of 
necessity, imaged at various different retinal eccentri- 
cities, it seems to us that where possible broad-band 
stimuli are preferable. We should also mention that 
obviously the experimental results and modelling re- 
ported here can only be averages over different retinal 
eccentricities, even for the line stimuli, and that there 
might well be significant variation in performance and 
model width if a paradigm was employed which allowed 
the effect of eccentricity to be probed. Because in these 
experiments the bimodal textures have only two orienta- 
tions, the patterns of local orientation contrast between 
the bimodal and the unimodal textures are different. That 
is, outliers in the Gaussian distribution could conceivably 
produce local orientation-based pop-out, which would 
not happen in the two discrete orientation texture. This is 
a potential alternative mechanism for performing the 
task. Without performing extensive control experiments 
it is not possible to completely discount this effect, but it 
seems from the success of the model in predicting the 
results in Experiment 2 that the most parsimonious 
hypothesis is that the effect of local orientation contrast 
on performance in Experiments 2 and 3 is small. 

In summary, the result of Experiment 3 is that 
performance is not greatly affected by the kinds of 
micropattern used, except when the orientational band- 
width is made very large. 

DISCUSSION 

We commence by summarizing the principal findings 
of these experiments: 

• Orientational bimodal texture features must be 
separated by at least 13deg in order to be 
discriminated from unimodal textures with the same 
variance. 
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• For high variance, large separation textures, per- 
formance is governed by the size of the central dip 
in the bimodal pdf, whilst at lower separations and 
variances larger dips are required. 

• Convolution of the bimodal pdf with a Gaussian 
filter together with the assumption that performance 
depends on the dip in the output models observer 
performance well, giving filter full-width band- 
widths of about 10-20 deg. 

• The form of the micropatterns employed is not an 
important factor in determining performance. 

Some related measures of resolution performance can 
be obtained from our previous work (Keeble et  al. ,  1995a, 
b) in which orientationally modulated textures had to be 
discriminated from orientationally random textures. If the 
orientationally modulated texture was generated from a 
sinusoidal pdf, then threshold performance for maximum 
modulation could, on average, only be achieved if the 
separation between peaks was more than about 65 deg. 
This is the analogue of the conventional resolution limit 
in the luminance domain (Bennett & Rabbetts, 1984). If 
instead equispaced discrete orientations were used, 
threshold was reached on average at a spacing of 
32.2 deg The difference between these limits again 
demonstrates that the difference in angles between the 
peaks is not the key variable which determines 
performance. In those experiments the results were 
adequately modelled with an orientational filter of 
average width 34 deg for the 1000 msec condition. 

The modelling of the results in this paper gives a mean 
filter width for the 1000msec condition of 13.0deg. 
What are the possible reasons for this difference of more 
than a factor of 2.5? It seems clear that a simple linear 
model with one filter width and performance based on the 
amplitude of the output modulation cannot simulta- 
neously explain the two sets of results. The essential 
difference between our previous results and those 
reported here is that in these experiments the orienta- 
tional content is always massively above threshold (that 
is, there is always a large anisotropy), whereas, before, 
the orientational content was at threshold for discrimina- 
tion from an orientationally random texture. This means 
that in the resolution task subjects know in what general 
angular region the difference between the pdfs lies, 
whereas in the detection task subjects must search over 
180deg for the modulation from random. If this 
attentional kind of explanation is correct, then interpreta- 
tion of the orientational filter as a low-level process 
would have to be treated with some caution. 

An alternative explanation for the differences in 
parameter values observed could be linked to the 
interpretation of the filter functions obtained in the two 
sets of experiments. We will argue later in this section 
that the limitation to resolution is not a first-stage filter 
limitation, but represents higher processes. These could 
either be dedicated second-stage filters or grouping 
operations. That is, lines with similar orientations would 

group together. There is a plethora of evidence for the 
existence of lateral connections between neurons tuned to 
similar orientations (e.g. Ramoa et  al.,  1986; Ts'o et  al. ,  

1986; Ts'o & Gilbert, 1988; Gilbert & Wiesel, 1989), 
whilst the concept of grouping by similar orientation is 
well-known to Gestalt psychology (Wertheimer, 1938). 
Excitation between similarly tuned neurons would act to 
"sharpen up" the cortical representation of orientationally 
bimodal textures, provided the difference between peaks 
is sufficiently large, otherwise, grouping would tend to 
merge the two peaks. In this way the linear model filters 
which we found would be regarded as epiphenomena of 
grouping processes, with the width of the filter reflecting 
the strength of the grouping. If this is the underlying 
mechanism, then it is interesting that a complex, 
intrinsically non-linear process can be modelled in a 
simple linear way. It might be that for textures with 
supra-threshold orientational content grouping takes 
place more effectively or quickly than for textures which 
are at modulation threshold. 

In fact, the coarseness of texture resolution that we find 
here is not surprising from an ecological point of view. It 
is probably not very important for an organism to have a 
precise knowledge of the shape of the orientation 
distribution of a texture. What would seem to be useful 
is the direction, strength and variance about the mean of 
the distribution [see discussion section in Keeble et  al. 

(1995a)]. It is worth reiterating that orientation acuities 
for lines and gratings can be better than 1 deg, and so 
would not predict our results here, particularly those in 
Experiments 2 and 3 where the bimodal textures 
comprise only two orientations. It would be interesting 
to know whether orientational acuities (that is, ability to 
assess the overall orientation of a textured region) for 
textured stimuli are nearer to the < 1 deg limit for single 
patterns than the 13 deg resolution limit reported here. 
Our and other observations suggest that this is so, (Keeble 
et  al.,  in prep.; Dakin, 1994). 

In Experiment 3 it was evident that the nature of the 
micropattern was not an important factor in performance: 
lines and Gabor patches with less than a certain 
orientational bandwidth produced similar results. This 
indicates that performance is probably not governed by 
the primary responses of first-stage oriented filters, or in 
other words, V1 orientationally sensitive neurons. This 
parallels the findings of Bowne (1990) that central noise 
(i.e. noise at a later stage of the system), is important in 
spatial frequency, orientation and temporal frequency 
discrimination. Most models of human texture perception 
have been couched in terms of second-stage filters which 
integrate information over some region (e.g. Landy & 
Bergen, 1991; Malik & Perona, 1990; Graham et  al.,  
1992). An alternative could be the grouping processes we 
mentioned earlier. Whichever is correct, the non- 
dependence of human performance on the input spatial 
frequency characteristics strongly suggests that the 
resolution limitation occurs at the later stage. 

We have utilized the orientational pdf as a means of 
describing how the strength of the orientational signal in 
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the texture varies with orientation. The other obvious 

descriptor of orientat ional  power is the Fourier  t ransform 

of the texture as a funct ion of orientation. However,  the 

relative invar iance of  performance with micropattern 

type and hence with ampli tude spectrum, indicates that 
the pdf  description is superior, at least for these 

experiments.  
In conclusion,  we tinish by emphasizing that the 

unanalysed  orientational pdf  of a texture cannot  contain 
all the secrets of texture perception: it will  only reveal 
certain aspects of it. In ]particular, the pdf  does not make 
explicit  the local orientational contrast which will occur 
in line textures. It has been known  for many  years that 

such contrast is very salient, and can be the basis for pop- 
out. In this paper we have discussed bimodal  textures that 
appear un imodal  (because of resolution limitations),  but, 

conversely,  there may well be un imodal  textures which 
appear b imodal  becau,;e of local orientation contrast 

effects. These will be the subject of  future investigations.  
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