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Digitized images: what type of grey scale should one use? 
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Abstract. One of the issues faced by engineers when designing a system which records an external 
event and represents it in the form of a digitized image on a VDU screen is which type of grey scale 
to use. An experiment is described which compares, in a simulated digitized image, the effect of a 
linear and a logarithmic grey scale on the detectability of a straight-line signal embedded in visual 
noise. It was found that both bright and dark signals were detected more easily with the linear scale. 
A signal detection theory analysis was carried out to compare human performance with that of an 
'ideal' observer who performed the detection task with a filter spatially matched to the signal. It was 
found that the model of performance for this ideal observer accounted well for the results provided 
the assumption of a linear transformation of luminance was made. The analysis showed that the 
superiority of the linear over the logarithmic grey scale was simply due to the higher signal-to-noise 
ratio of the signals in the former. 

1 Introduction 
In the past two decades the rapid development of digital image processing techniques 
has provided both a tool for visual scientists and an opportunity for the practical 
application of the results of their investigations. In digital image processing external 
events such as visual scenes, underwater sounds, and body scans are processed by 
computer and displayed as images on a visual display unit (VDU). Typically an operator 
is required to detect, recognize, and analyze target shapes within those images. Clearly 
the design of such a system will be partly guided by the need to maximize the subjective 
quality of the images in general and the visibility of targets in particular. There is now a 
large body of literature in which the particular merits of various types of image process
ing or image enhancement, obtained either by subjective impressions of image quality 
(Todd-Pokropek and Huggett 1981; Chao et al 1983; Peli 1984) or by specific detec
tion and recognition tasks (Chambers and Courtney-Pratt 1969, Judy and Swensson 
1981; Chao et al 1983) are assessed. 

Complex displays may employ colour, or may vary as a function of time to generate 
flicker or movement; but typically the output image is a function of only three param
eters, two being the X- Y spatial coordinates and the third being the intensity of the 
image at a particular X-Y location. The purpose of the image is to provide a symbolic 
visual representation of some external state of affairs, and the broad issues facing the 
designer may be simply stated: how may these three dimensions of variation in the 
image best be used to convey the required information about the external world? This 
fundamental question itself may be considered as having two levels. The first concerns 
the mapping of external information onto the three available dimensions of variation in 
the image: what are these dimensions to represent? In some cases the question hardly 
arises because the mapping is so obvious, as in the case of radiography: in an x-ray 
image the two spatial dimensions are used to represent directly the spatial arrangement 
of the source object, and intensity is used to represent opacity. In other cases, however, 
there is no such obvious source-object-to-image compatibility; one spatial dimension of 
the image may be used to represent time, the other to represent frequency, and the 
dimension of intensity to represent amplitude, as in the familiar sound spectrograph. 
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Once this first question has been resolved the second question becomes clear: what 
should be the nature of the mapping of object properties onto image dimensions? 
How should different values in the object dimensions (time, frequency, amplitude, and 
so on) be represented by different values in the image dimensions? For example, should 
equal spatial intervals in the image represent equal intervals in object frequency (a linear 
scale) or equal ratios in object frequency (a logarithmic scale)? It is to one aspect of this 
second class of issues that the present study is directed. When variations in intensity in 
the image are used to represent variations in the magnitude of an object dimension, 
what is the best type of grey scale to use? 

When an external event—essentially an analog stream of, for example, intensity 
across two-dimensional space for a visual event or amplitude across frequency - time 
for an auditory one—is digitized, it is divided into 'bins', each bin representing a speci
fied amplitude range in the input. This process is often referred to as 'quantization'. 
After quantization each bin is allocated a single luminance in the output image, with the 
total number of luminances, or grey levels, corresponding to the total number of bins. 
The grey scale may define the absolute values of those allocated luminances, or simply, 
and perhaps more importantly, the function relating grey-scale values to luminance. 

Our aim was to investigate the effect of different types of grey level on signal detect-
ability, first as a matter of straightforward empirical interest and second in an attempt 
to derive a simple theoretical rule to account for any difference in performance. We 
chose to compare two grey-level scales, one in which the intensity difference between 
successive grey-scale values was a constant (the linear scale) and one in which the 
intensity difference between successive grey levels increased by a constant proportion. 
Because such a scale can be described as consisting of equal logarithmic intervals we 
refer to it as a logarithmic scale. This scale was selected because it has commonly been 
chosen by display engineers (eg Chanda et al 1984). 

In view of some recent experimental work (Legge and Kersten 1983) suggesting that 
decremental signals are in some circumstances more detectable than incremental sig
nals, we also investigated the effect of signals which were on average either brighter or 
darker than the background against which they were presented. 

2 Method 
2.1 Subjects 
Three male undergraduates participated. All had normal vision and were naive as to the 
purpose of the experiment. 

2.2 General characteristics of the displays 
Instead of taking an input trace and then quantizing it, we simulated the effect of this by 
means of an algorithm which directly computed the output display. The precise way in 
which this was done is discussed below. 

The stimuli were generated by a Supervisor 214 (Gresham Lion PPL) graphics/image 
system interfaced to a PDP 11/40 host computer and displayed on a Digi vision TV 
monitor. The luminances of the 256 grey levels available in the system were measured 
with a United Detector Technology microphotometer (model 81) focused onto the 
phosphor of the monitor when it displayed a large homogenous patch of pixels. Each 
pixel was approximately circular with a diameter of 1.27 min visual arc. 

2.3 Grey-level distribution of signal and noise 
The displays all contained eight grey levels, the actual luminances of which were 
selected from the 256 available according to the type of grey scale under investigation. 
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Each pixel was randomly allocated one of the grey levels, /, with a probability Pt deter
mined by the binomial rule where 

P<~ UMI uPrd-P)N~r> i-r+1; N - 7 . (1) 
r\(N— r)\ 

The underlying shape of the distribution of grey-level probabilities is determined by 
the parameter p in equation (1), where p can range from 0 to 1. When p = 0.5 the 
distribution is symmetrical; as p increases from 0.5 to 1 the distribution becomes 
increasingly skewed to the left. The noise was generated with p set to 0.5 and figure la 
shows the resulting histogram of grey-level probabilities. Five signals of different 
strengths were generated with p values of 0.56, 0.57, 0.58, 0.59, and 0.6. When the 
luminances were allocated on an ascending scale (1-8) the average intensity of the 
signals was greater than that of the noise owing to the larger proportion of pixels with 
high luminances, as can be seen from the grey-level histogram for a bright signal with 
p = 0.58 shown in figure lb. When a descending scale was used (grey levels 8 - 1) the 
signals were darker owing to the larger proportion of pixels with lower luminances. The 
signal p values were chosen to produce a range of performance giving approximately 
between 10% and 90% correct signal detections as determined in pilot experiments. 

The average luminance L and variance o2 of the signals and the noise were calculated 
numerically with the following equations: 

L = Z^-L /. , a2 = E / > • ( £ , . - L ) 2 , 

where Pi and L, are the probability of occurrence and luminance, respectively, of the fth 
grey level. 

One consequence of generating stimuli in this way is to make the distribution of 
luminances in the signals asymmetrical: either higher luminances are more common 
than lower luminances (signals brighter than the background) or the reverse (signals 
darker than the background). Previous investigations have used only symmetrical dis
tributions (eg Sullivan 1983) and the present paper may be seen, in part, as extending 
their findings to asymmetrical distributions. 
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Figure 1. The grey-level distribution for (a) the noise background and (b) a signal with 
p = 0.58. The values on the abscissa do not represent actual luminances but are nominal labels 
for the eight grey levels. The actual luminance values depended on the type of grey scale 
employed. 

2.4 Spatial characteristics of signals and noise 
The noise background was a slab of 512 pixels wide x 256 pixels high, subtending 
10.2 deg x 5.1 deg, and was randomly selected from six pages of 512 x 512 pixels, 
freshly generated before each experimental session and stored in the memory planes of 
the Supervisor 214. The signal was a vertical line 1 pixel x 256 pixels which replaced 
one of the 512 noise 'lines'. On each trial it was freshly generated. 
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2.5 Grey scales 
By allocating values from the palette of 256 to the eight digital values it was possible to 
produce a grey scale of any desired specification. The two scales of interest here were 
(i) a linear scale (equally spaced luminances) and (ii) a logarithmic scale (equal ratios of 
luminances). Since a linear scale with the same luminance range as that of a log scale 
results in a mean luminance approximately 1 log unit greater in our images (see below), 
it was decided to use a third scale, again linear but with the same mean luminance as that 
of the log scale. This served to check that any difference in performance found for the 
two scales was not attributable to the substantial difference in overall mean luminance. 

The logarithmic scale consisted of eight luminances in the range 0.1-62 cd m~2, 
resulting in a noise background with a calculated mean luminance of 3.76 cd m~2. The 
first linear scale had the same range but a mean luminance of 29.1 cd m - 2 ; the second 
linear scale had the same mean luminance as that of the log scale but a range 
0.1-7.6 cd m~2. For each of the three types of scale used there were two conditions, 
one in which the scale was allocated in an ascending direction, ie mapped onto digital 
values 1-8, the other in which the scale was allocated in a descending direction, 
ie 8 - 1 . Because the grey-level probability distribution for the noise background was 
symmetrical (figure la) it made no difference whether a given scale was allocated in a 
descending or an ascending way. On the other hand, for the signals an ascending scale 
resulted in a signal brighter than its background and a descending scale in one that was 
darker. Thus there were six main conditions in all, and five signal strengths for each 
condition. 

2.6 Procedure 
After familiarizing the subject with the experiment through sufficient practice trials the 
subject was seated 120 cm from the monitor. In the interval between each trial, in which 
the subject viewed the screen with a homogenous field of mean luminance the same as 
that of the noise, a signal replaced one of the randomly selected 510 horizontal loca
tions of the slab of noise that had itself been randomly selected from the six available 
pages in the Supervisor 214. The two vertical noise-line positions on the extreme 
boundaries were not considered as potential signal locations, thus ensuring that the 
signal was certain to be surrounded by at least one noise line on each side. During the 
trial the subject was required to find the signal, which he was told was the line which 
had overall the greatest (or least) intensity. The subject indicated the horizontal location 
of the signal with a box cursor which could be positioned precisely over a noise or 
signal line by means of a tracker ball which he controlled. When he was satisfied with 
his choice he pressed a button and his response was recorded. At this point the stimulus 
disappeared and was replaced by another 4 s later. 

For each of the six conditions each subject performed three hundred trials divided 
into six sessions of fifty trials each. During a single experimental session the five 
different signal intensities (ten trials of each) were randomly presented but there was 
only one type of grey scale per session. The order of presentation of conditions was 
randomized. 

3 Results 
Figure 2 shows the means of the percentage correct scores for each condition and 
signal strength, each data point representing the average between the three subjects, ie 
from 180 trials. As can be seen from the figure, performance with the two linear grey 
scales, for both bright and dark signals, is superior to that of the logarithmic scale. 
A four-way analysis of variance (ANOVA) with grey scale, type of signal intensity (bright 
versus dark), signal strength (p value), and subjects as factors showed that there was a 
main effect of type of grey scale [F2tA = 43.3, p < 0.01). A separate four-way ANOVA 
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in which the results from the logarithmic scale were omitted showed no significant main 
effect of grey scale (FU2

 = 0.36, p = 0.6). As can be seen from the figure, the results 
from the two linear scales fall very closely together for both bright and dark signals. 

As regards the difference in performance between bright and dark signals, the first 
four-way ANOVA showed no significant overall difference in performance (Fl2 — 0.3, 
p = 0.63), but a significant interaction between type of signal intensity and type of grey 
scale [F2t4 = 31.52, p < 0.01). As can be seen from figure 2, performance with dark 
signals was slightly better than with bright signals for the linear scale condition but 
considerably worse for the log scale. If one analyzes the results for the two types of 
scale separately, the superiority of the dark signals with the linear scale is found not to 
be significant (Fh2 = 2.05, p = 0.29). On the other hand, the superiority of the bright 
signals for the log scale data is significant (Fx 2 = 50.9, p < 0.05). 

Although from a practical point of view the performance of our subjects as measured 
by the percentage of correct signal detections is sufficient to guide any engineer 
designing a system producing images similar to ours, theoretical considerations demand 
a deeper analysis of the results. We have therefore used a signal detection theory (SDT) 
analysis (Green and Swets 1966) to convert our percentage correct values to a measure 
of sensitivity for the subjects, d'e, for each of the various conditions of the experiment. 
A number of studies have been carried out with SDT analysis for the detection of 
luminance increment against visual noise (eg Cohn and Lasley 1975; Swets and Birdsall 
1978; Burgess et al 1982; Sullivan 1983). However, these studies have invariably used 
the paradigm in which a completely homogenous signal is added to gaussian white noise 
ie noise with a very large number of grey levels, in order to satisfy the requirement that 
the signals and noise be gaussian with equal variance, the simplest case to deal with 
mathematically. Although our study used displays with just eight grey levels and the 
noise and signals differed in the shape of their underlying luminance distributions, it is 
shown below that a conventional SDT analysis can be made. 
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Figure 2. The percentage of correct signal detections as a function of signal intensity, type of 
grey scale, and bright versus dark signal. Signal intensity is plotted on the abscissa and is here 
measured simply by the parameter p which indicates the degree of skewness of the binomial 
distribution of grey levels in the signal. 
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The SDT analysis allows us to compare human performance with that of an 'ideal' 
observer who performs the detection task using a filter whose spatial dimensions 
exactly match those of the signal. The output of the filter is proportional to the mean 
luminance of all the pixels which fall within it and the assumption is that the filter is 
used as a travelling window to measure the average intensity of all the potential signal 
candidates in the display and to indicate as the signal the candidate with the highest 
value. The ideal observer used here is less general than the one which is defined as 
utilizing all the statistical information available in the display for signal detection 
(Barlow and Reeves, 1979; Burgess et al 1982), since it does not utilize the known 
differences in the underlying shapes of the grey-level distributions of the signal and 
noise. We have shown in a more recent experiment (to be published) that with otherwise 
identical displays extremely large differences in the shape of the underlying distribu
tions are required before detection by human observers can take place in the absence of 
overall luminance differences. The ideal observer used here, therefore, is best thought 
of as a proposed model of performance for the hypothetical situation in which no noise 
is present other than that due to the statistical variation in the output of the matched 
filter that is employed. 

The performance of this ideal observer is measured by d[ which is defined as: 

T -T 
d = 

where Ls and Ln are the mean luminance of the signal and noise respectively, an is the 
standard deviation of noise pixel luminance, and A is number of pixels making up the 
signal, in this case 256. The term in the denominator is essentially the standard devia
tion of the mean luminance of a line of 256 noise pixels. In other words, these two 
factors (i) the difference in intensity between the signal and noise and (ii) the variance in 
intensity of the output of the matched filter to the noise lines, are assumed in this model 
of detectability to be the two factors affecting performance. The term d[ is also the 
signal-to-noise ratio (SNR) of the output of the matched filter expressed in standard 
deviation units of the noise distribution. 

To convert the percentage correct measures into d'e values, we used an iterative 
search procedure to obtain d'e by numerical evaluation of the following formula, taken 
from Green and Swets (1966), by means of which one can obtain & (proportion of 
correct signal detections) from d'e:

(1) 

r+oo 

& (x-di)0(x)M~ldx, 

where (j> and 0 represent the ordinate and area under the lower tail of the unit normal 
distribution and M is the number of signal alternatives, in this instance 510. The 
assumption is that the distributions of the signal and noise are normal with equal 
variance. Although the grey-level distributions in the signal and noise have a binomial 
distribution, the sample mean luminances of the noise and signal lines, each containing 
256 pixels, will be normally distributed. We have shown empirically (to be published) 
with yes/no ROC (receiver operating characteristic) curves that the ratio of standard 
deviations of the signal and noise are sufficiently close to unity for the equal variance 
assumption to be made. 

To compare human performance at this task with that of our ideal observer we have 
used a measure of efficiency, F, where F = {d'Jd[)2. This measure has been used for 
the measurement of the efficiency with which humans process luminance increments 

(1) We would like to thank Professor Curnow of the Department of Applied Statistics, Reading 
University, for help with the necessary software. 
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(Sullivan 1983; Burgess and Ghandeharian 1984), sine-wave intensity-modulated sig
nals (Burgess et al 1982), dot density (Barlow 1978), and symmetry in random-dot 
patterns (Barlow and Reeves 1979). 

The first reason for measuring efficiency for the various conditions of this experi
ment is that it allows us, for each grey scale, to disambiguate the differences in per
formance which could be attributable to differences in the SNR from those attributable 
to differences in visual processing. If all the efficiency values collapse onto a single 
point it indicates that the observed difference in performance in terms of percentage 
correct detections was simply a consequence of the different SNR associated with each 
of the different grey scales. If all the efficiency values are not identical, then this would 
suggest that there is something fundamentally different about the way in which the 
visual system processes displays with different grey scales. 

The various measures of F are shown in figures 3a and 3b: figure 3a for the bright 
signals and figure 3b for the dark signals. As can be seen, the F values in figure 3a fall 
very closely together around a mean value of 18%. The F values for the dark signals are 
not as close together and have an average value of 22%. The log scale F values for the 
dark signals are noticeably greater than their linear scale counterparts, although it is not 
clear why this should be so. 

A four-way ANOVA on the overall F measures shows no significant differences between 
type of grey scale (F2A = 1.4, p = 0.34), or signal strength {F4H = 1.16, p = 0.39). 
The difference between bright and dark signals is just nonsignificant {Fl 2 = 16.3, 
p = 0.06). 

Linear regression analyses with the method of least squares were carried out to 
ascertain to what extent the d[ values could account for the variance in performance 
between the various grey scales. The analyses were carried out with the mean values 
of d'e across subjects and separately for both bright and dark signals. The resulting 
coefficients of determination, R2 (the proportion of variance in performance across 
conditions that is attributable to d{), are as follows: for bright signals R2 = 0.96; 
for dark signals R2 = 0.97. The model of signal detection appears to account for the 
data very well. 
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Figure 3. The measures of efficiency, F, with which the performance of the human subjects is 
compared with that of an 'ideal' observer using a filter whose spatial dimensions match the 
signal exactly: (a) bright signals, (b) dark signals. 

4 Discussion 
4.1 Type of grey scale 
The percentage correct results provide good evidence that for practical displays of the 
kind employed in this experiment a linear scale is preferable to a logarithmic one. 
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Performance with our subjects was on average 8% better with the linear scale for bright 
signals and 28% better for dark signals. 

The difference between the linear and logarithmic grey scales is attributable to the 
greater signal-to-noise ratio of the linear scale signals as shown by the respective 
d[ values; this is discussed in more detail below in the context of a model for these data. 

4.2 Bright versus dark signals 
Some previous findings have shown that luminance decrements are more visible than 
increments when simple stimuli such as bars or gratings are used (Cohn and Lasley 
1975; Legge and Kersten 1983). Some of our data show a similar slight trend in this 
direction but it is nonsignificant. The phenomenon found with simple stimuli is held to 
be a consequence of a logarithmic transform of input intensity at an early stage in visual 
processing (Legge and Kersten 1983). The model of detectability proposed here 
assumes a linear transform of input intensity and therefore would not predict any 
difference between bright and dark signals. It is not clear why the two different kinds of 
experiment appear to give different results. 

4.3 Model of signal detection 
Our data are best described by a model which does not require a nonlinear transform at 
the input stage, as the results of some studies seem to suggest (Maudarbocus and 
Ruddock 1973; Legge and Kersten 1983; Morgan et al 1984). Rather, it seems that, at 
least under the conditions of our experiment, the system can best be described in terms 
of a linear input stage followed by a linear summation of luminances falling within the 
integration region of an elongated receptive field. 

The simple model of signal detection proposed here, namely that detection depends 
on a filter whose spatial dimensions match those of the signal and whose output 
depends solely on the total amount of light energy falling within its integration field, 
provides a good description of the data. Detectability depends upon two factors; the 
first is the relative size of the output of the filter at the location of the signal and the 
second is the variability of its output at all other locations. The filter can be thought of 
as an elongated receptive field which integrates the luminance of points falling within its 
excitatory region. Our results, of course, do not tell us anything about the relationship 
between the actual spatial dimensions of the signal and its detectability or to what 
extent such a relationship can be explained in terms of known properties of visual 
receptive fields. We are currently carrying out experiments on this. 
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