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Mach bands are the illusory dark and bright bars seen at the foot and knee of a luminance
trapezoid. First demonstrated by Ernst Mach in the latter part of the 19th century, Mach
bands are a test bed not only for models of brightness illusions but of spatial vision in
general. Up until 50 years ago the dominant explanation of Mach Bands was that they
were caused by lateral inhibition among retinal neurons. More recently, the dominant idea
has been that Mach bands are a consequence of a visual process that generates a sparse,
binary description of the image in terms of “edges” and “bars”. Another recent explanation
is that Mach bands result from learned expectations about the pattern of light typically
found on sharply curved surfaces. In keeping with recent multi-scale filtering accounts
of brightness illusions as well as current physiology, I show however that Mach bands
are most simply explained by response normalization, whereby the gains of early visual
channels are adjusted on a local basis to make their responses more equal. I show that a
simple one-dimensional model of response normalization explains the range of conditions
under which Mach bands occur, and as importantly, the conditions under which they do
not occur.
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INTRODUCTION
Ernst Mach was the first to report the illusory dark and bright
bars on a luminance trapezoid that now bear his name (Mach,
1865; translated by Ratliff, 1965)—see Figure 1. As with other
illusory brightness phenomena, numerous explanations for this
intriguing phenomenon have since been proposed (the earlier
explanations are reviewed by Ratliff (1965) and more recent
ones by Pessoa (1996) and, briefly, by Kingdom (2011)). Mach
proposed that the bands were seen at the peaks and troughs in
the second derivative of the luminance profile, and conjectured
that this was due to reciprocal interactions between neighboring
retinal cells, in other words “lateral inhibition”. As noted by
Wallis and Georgeson (2012), a similar conclusion was reached by
investigators who began the re-examination of the phenomenon
some 60 years ago (Burnham and Jackson, 1955; O’Brien, 1958;
Charman and Watrasiewicz, 1964; Thomas, 1965). Indeed, if
one convolves a trapezoidal function with an even-symmetric
bandpass filter, such as a model of a retinal ganglion or lateral-
geniculate-nucleus (LGN) cell, one observes a dip at the foot
and a bump at the knee of the trapezoid. However, any single
bandpass filter account of Mach bands is problematic for two
reasons. First, if the filter is dc-balanced, it incorrectly predicts
the same brightness either side of the ramp (Figures 2, 3).
Unbalancing the filter gets round this problem but a second
problem remains: the single-filter response shows the largest
Mach bands at step edges, where none occur (Fiorentini, 1972;
Tolhurst, 1972; Ross et al., 1981; Ratliff, 1984). That Mach bands
are not seen at a step edge is arguably a defining constraint of
any model of the phenomenon. However the observation itself
is not always appreciated, so given that the appearance of a step

edge is a matter of some importance it will be considered in detail
here.

The absence of Mach bands at step-edges prompted Tolhurst
(1972) to suggest that Mach bands result from inhibitory inter-
actions between “edge” and “bar” detectors. At a step edge,
Tolhurst argued, strongly stimulated edge detectors inhibit weakly
stimulated bar detectors, preventing any illusory Mach bands
from appearing. On the other hand with a trapezoid, the opti-
mally excited edge detectors are found in the center of the ramp

FIGURE 1 | Top: A trapezoidal edge showing Mach bands. Bottom:
schematic of luminance profile.
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FIGURE 2 | Schematic of the principle behind Feature models of Mach
bands that employ even- and odd-symmetric filters. (A) even-symmetric
(B) odd-symmetric filter. (C) trapezoidal edge profile. (D) response of even
(green) and odd (purple) filters. The even-symmetric filter gives a strong
response at the foot and knee of the trapezoid whereas the odd
–symmetric filter gives zero response. (E) bars are signaled at the
trapezoid’s foot and knee.

while the optimally excited bar detectors are found at the foot
and knee of the ramp. Because the two are spatially separated,
Tolhurst argued, there is less inhibition of the bar detectors by
the edge detectors, with the result that the illusory bands appear.
Tolhurst’s account of Mach bands in terms of interactions between
edge and bar detectors anticipated the spate of models termed
here “Feature” models that emerged in the 1980s, all of which
attempted to provide an account of Mach bands. The models
include MIRAGE (Watt and Morgan, 1985; Morgan and Watt,
1997), the local energy model (Morrone and Burr, 1988; Ross
et al., 1989), MIDAAS (Kingdom and Moulden, 1992) and most
recently the N2+1+ model (Wallis and Georgeson, 2012). Inspired
by Marr’s (1982) notion of the primal sketch, Feature models
are based on the idea that early vision generates a sparse, binary,
symbolic description of the image in terms of “edges” and “bars”.
The symbolic edge-vs.-bar description is generated using rules
that interrogate the responses of linear bandpass filters tuned to
different scales and/or orientations. In some Feature models (e.g.,

FIGURE 3 | Response normalization model of Mach bands. A trapezoidal
edge in (A) is convolved with a bank of 9 even-symmetric filters at octave
scale intervals in (B), to produce the responses in (C). Each response is
subject to a normalization function that renders the response amplitudes
across scale more equal, resulting in (D). All filter responses are then
summed to produce the model response in (E).

MIRAGE, MIDAAS) only even-symmetric filters are employed,
and the edge-vs.-bar description is based on the shape of the filter
response profiles: “edge” if the profile is odd-symmetric, “bar” if
even-symmetric. In other models (e.g., local energy, N2+1+) both
even- and odd-symmetric filters are employed, and the edge-vs.-
bar description is based on the relative activity of the two types of
filter: “edge” if the odd-symmetric response is dominant, “bar” if
the even-symmetric response is dominant. Although the details of
the filters employed, the manner in which they are combined (if
at all) and the rules for interpreting their outputs differ between
Feature models, all share the key idea that the foot and knee of a
trapezoid elicits a relatively strong response in an even-symmetric
bandpass filter, and this is interpreted as indicating the presence
of a bar. Figure 2 is a schematic of the principle behind those
Feature models that employ odd- and even-symmetric filters,
but it must be understood that important details of the model
implementations are left out of the figure. In the figure it is the
relative strength of the even- compared to odd-symmetric filter
responses at the foot and knee of the trapezoid that is interpreted
as “bar not edge”. On the other hand, the opposite obtains for
a step edge, where the responses of the odd-symmetric filter
are dominant, leading to the “edge not bar” interpretation. One
advantage therefore of Feature models over lateral inhibition is
that Feature models provide an explanation of not only why Mach
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bands are seen in trapezoids, but crucially why they are not seen
at step edges.

In this communication the case will be put that in spite of
the superiority of Feature models over earlier lateral inhibition
models, there is a simpler and more parsimonious explanation
of Mach bands: response normalization. Response normalization
is the canonical physiological process whereby the responses of
neurons are normalized with respect to the local average activity
of other neurons in the vicinity (reviewed by Carandini and
Heeger, 2012). Response normalization is closely related to the
concept of contrast normalization, where physical contrast rather
than neural response is used to model the normalization process
(Carandini and Heeger, 2012). One of the effects of response nor-
malization is to make more equal the filter response magnitudes
of neurons in different parts of the image, and it is this response
equalization property that is argued here to be the cause of Mach
bands.

The inspiration for considering response normalization as a
possible cause for Mach bands comes from a recent class of model
aimed at providing low-level accounts of a variety of brightness
illusions. This class of model combines multi-scale filtering with
response (often termed contrast) normalization (Blakeslee and
McCourt, 1999; Dakin and Bex, 2003; Blakeslee et al., 2005;
Robinson et al., 2007; Otazu et al., 2008). However only one of
these models, the contextual interaction model of Otazu et al.
(2008), has been applied to Mach bands. While the model success-
fully predicts Mach bands in a trapezoidal edge, it also predicts
Mach bands at a step edge (Otazu, personal communication),
and it remains to be determined whether it can account for the
observed differences in the magnitude and width of Mach bands
across the variety of stimuli that are considered here.

This communication comprises a modeling exercise that
demonstrates how a simplified model of response normalization
that instantiates directly its response equalization property pro-
vides an account of not only the circumstances in which Mach

bands occur, but just as importantly when they do not occur. The
model is one-dimensional (1D) and is applied to the 1D lumi-
nance profiles of various trapezoidal and related stimuli. A brief
report of the model has been given elsewhere (Kingdom, 2013).

THE MODEL
Figure 3 outlines the model. Each 1D stimulus is convolved with
a bank of 1D second-derivative-of-Gaussian (even-symmetric)
filters, whose gains are such as to give the same peak-amplitude
response to a step-edge, in keeping with the properties of retinal
ganglion cells (Croner and Kaplan, 1995) and early-stage filtering
models based on efficient coding (Graham et al., 2006). The
equation for the filters is:

F(x; σ) = −
1

σ

(
x2

σ 2
− 1

)
exp

(
−x2

2σ 2

)
(1)

where x is position and σ the standard deviation of the under-
lying Gaussian. The model employs 9 filters of different scale (only
three are shown in the figure), achieved by setting the σ s to octave
intervals between 0.007 and 0.43 of the width of the stimulus. All
9 filters are separately convolved with the stimulus to produce 9
filters responses. Each filter response is then subject to response
normalization. Response normalization here is implemented by
multiplying each filter response by a constant, given by:

1

1+ kas/ā
(2)

where as is the peak-to-mean amplitude of the filter response
to the edge, ā is the mean amplitude across all filter scale responses
and k is a constant that determines the strength of normalization.
In all the simulations here k is fixed at 0.5 and was chosen to
provide a good visual fit to the data from Figure 4 in Wallis and
Georgeson (2012), shown here in Figure 7. Besides k, which is

FIGURE 4 | Model applied to a trapezoidal edge, shown as the black
line. The green lines show the responses of four of the filter scales
selected at 2 octave intervals, while the purple line shows the sum of all 9

filter responses. Left: without response normalization the summed
response is close to veridical. Right: with response normalization Mach
bands are produced.
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fixed throughout, there are no free parameters in the model. The
effect of the response normalization stage is to reduce the response
amplitudes of all filters, but more so for ones with relatively high
amplitude, resulting in more equal filter responses across scale.
The factor ā (mean amplitude) causes the normalization to be
invariant with respect to stimulus contrast and results in Mach
bands whose contrasts are invariant with stimulus contrast, as
reported by Wallis and Georgeson (2012). It is important to note
that the response normalization term used here is not the same
as a saturating point-wise nonlinearity, such as the well-known
Naka-Rushton equation (Naka and Rushton, 1966). The response
normalization term here is a constant applied multiplicatively
to each filter’s response, a constant that alters the amplitude of
each response but does not “distort” its shape by introducing new
Fourier components as does a point-wise saturating nonlinearity.
In the final stage of the model the normalized responses of all 9
filters are summed to produce the predicted brightness profile. For
illustration purposes the summed responses have been multiplied
by another constant in order to scale them to match the amplitude
of the stimulus luminance profile (0.4 in all cases), in order that
the physical stimulus profile and its predicted appearance can be
directly compared.

Models of response normalization vary considerably in imple-
mentation. In some models the responses of each orientation
and spatial-frequency of filter are divided at each point by the
weighted sum of filter responses across all orientations (Carandini
and Heeger, 2012) or scales (Robinson et al., 2007). In some
cases the weighted sum itself is subjected to blurring across space
using a Gaussian kernel (e.g., Robinson et al., 2007). Blakeslee and
McCourt (1999) modeled response normalization by first pooling
across scale the filter responses at each orientation, then dividing
at each orientation the pooled response averaged across the whole
stimulus. Conceptually, our model of response normalization is
most similar to that of Dakin and Bex (2003), who convolved their
stimuli with circularly-symmetric log Gabor filters and then set
equal the amplitudes of the filter responses in order to produce
stimuli with 1/f (where f is spatial-frequency) Fourier amplitude
spectra. In our model the amplitudes are not set equal, just
less unequal. The model here is constrained to being 1D, which
rules out normalizing across orientation. Normalizing to response
energy pooled across scale rather than to amplitude within a scale
is an obvious alternative option. Suffice to say that the author’s
attempts so far using cross-scale normalization, while successfully
predicting the presence of Mach bands, have yet to produce results
as good as the within-scale normalization employed here (in
particular predicting the results shown in Figure 7). No doubt
with the larger number of free parameters available with cross-
scale normalization (e.g., the standard deviations of the Gaussian
weighting functions across scale and across space, as well as
the normalization constant) there is every reason to suppose
that cross-scale normalization, especially in conjunction with 2D
stimuli, may ultimately prove to be as good if not better a model
than the one presented here.

RESULTS
The model output for a trapezoidal edge is shown in Figure 4, on
the left with k = 0, i.e., with no response normalization, and on the

right with k = 0.5. Why are Mach bands predicted only in the right
hand figure? Although the foot and knee of the trapezoid elicit
significant responses in the small-sized filters, their amplitudes are
still lower than those from the large-sized filters that respond to
the edge as a whole. The effect of response normalization is to
relatively enhance these small-sized filters responses, resulting in
the accentuated responses known as Mach bands.

EFFECT OF STEEPNESS OF TRAPEZOIDAL EDGE
Figure 5 shows trapezoidal edges with varying ramp widths,
together with the predicted responses from the model. As can
be seen the Mach bands become narrower as the ramp nar-
rows, disappearing altogether in the limiting case of the step-
edge. Although with the step-edge one observes a slight but
broad brightening and darkening in the vicinity of the edge,
this is not part of the continua that are Mach bands. Thus as
has been previously reported (Fiorentini, 1972; Tolhurst, 1972;
Ross et al., 1981; Ratliff, 1984) there are no Mach bands at a
step edge. The model response profiles are shown on the right
and accord with the percepts. The reason why no Mach bands
are predicted by the model at a step-edge is simple. Because
all scales of filters give the same amplitude of response to a
step edge, no amount of normalization will impact upon their
relative amplitudes, so the percept is predicted to be more-or-
less veridical. Interestingly, the slight but broad brightening and
darkening either side of the edge is captured by the model; it
is caused by the fact that the filter set employed is not fully
complete due to the absence of filters tuned to very low spatial
frequencies.

FIGURE 5 | Model applied to trapezoidal edges of various ramp widths.
Ramp width is given in units of image size.
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FIGURE 6 | Generalized Gaussian edges (GGEs) with three values of
the exponent n and σ set to 0.067 of the width of the stimulus. On the
right are shown the stimulus luminance profiles (black) and model
responses (purple).

GENERALIZED GAUSSIAN EDGES
In an elegant series of experiments, Wallis and Georgeson (2012)
measured the frequency-of-seeing and positions of Mach bands
in a class of edge termed “Generalized Gaussian edges”, or GGEs.
The 1D formula for a GGE is:

L(x) =
∫

exp
(
−|x|n

2σn

)
(3)

where L(x) is the luminance profile and x is position. The
parameter σ determines the width of the edge and n the sharpness
of its transitions. When n is 2 the GGE is a conventional Gaussian
edge, when n = 3.4 a sine-wave edge and when n is greater than
about 8 the GGE approximates a trapezoid.

Example GGEs are shown in Figure 6 along with the model
predictions. Wallis and Georgeson showed that observers very
rarely reported Mach bands in GGEs with n < 2 and that the
probability of seeing Mach bands increased monotonically with
n for 1 > n <= 5. Figure 7 reproduces Wallis and Georgeson’s
data, along with the predictions from the model, for which the
normalization constant k of 0.5 that is used throughout this study
was chosen to provide the best visual fit. For the model predic-
tions the contrast of the Mach band is the dependent measure,
defined as the difference in model response between the peak of
the Mach band and the lowest part of the plateau either side,
divided by the mean amplitude of the response. Although the two
dependent measures, Mach band probability-of-seeing in Wallis
and Georgeson, Mach band contrast here, are very different, the
similarity between the data and model predictions is remarkable.
The response-normalization model even predicts the switch in
maximum frequency-of-seeing when going from scale 3 to scale
6 at n = 2.5.

PHASE-MANIPULATED TRAPEZOIDAL WAVEFORMS
In their study of Mach bands, Ross et al. (1989) manipulated
the Fourier phase relationships of a trapezoidal waveform in
order to determine the importance of local phase relationships
for Mach bands. They demonstrated that whereas in a trapezoidal

FIGURE 7 | Left: probability of seeing Mach bands in GGEs as a function
of the exponent n and scale of edge (proportional to standard deviation
σ ): data from Figure 4 in Wallis and Georgeson (2012), reproduced with

permission. Right: predicted Mach band contrasts from the response
normalization model for three values of standard deviation (SD) in image
units, also at octave intervals.
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FIGURE 8 | Top left: trapezoidal waveform showing Mach bands.
Middle left: Hilbert transformed trapezoidal waveform. Bottom left:
trapezoidal waveform with all Fourier phases set to 90 deg. On the right are
shown the luminance profiles (black) and response-normalization model
responses (purple).

waveform Mach bands were visible, none were seen either when
the waveform was subject to a Hilbert transform, which shifts all
the Fourier phases by a quarter of a cycle, i.e., 90 deg, or when all
the Fourier phases were set equal to 90 deg. Figure 8 confirms all
three observations. Ross et al. concluded that Mach bands were
observed only at points where the different Fourier components
aligned in cosine phase, since the Hilbert transform re-aligned
them instead in sine phase, and setting all the Fourier phases to 90
deg disrupted the cosine-phase alignment. Put another way, the
two Fourier phase manipulations employed by Ross et al. effec-
tively removed the sharply-discontinuous feet and knees of the
waveform that normally elicit relatively strong responses in small-
scale even-symmetric (i.e., cosine-alignment-sensitive) filters.
Ross et al. argued that their findings were best explained in terms
of the local energy Feature model (Morrone and Burr, 1988), in
which relatively strong even-symmetric filter responses are inter-
preted as signaling the presence of bars. Figure 8 however shows
that the response normalization model, while correctly predicting
Mach bands in a trapezoidal wave, also correctly predicts no Mach
bands in either type of phase-manipulated trapezoidal waveform.

EFFECT OF NEIGHBORING STRUCTURE
Ratliff et al. (1979, 1983) and Ratliff (1984) reported that Mach
bands were attenuated by luminance contours positioned in the
vicinity of the trapezoid. To explain this phenomenon, Ratliff
(1984) invoked Tolhurst’s (1972) account of Mach bands in terms
of interactions between edge and bar detectors. Ratliff (1984)

FIGURE 9 | Left: trapezoid luminance profile without (top) and with
(bottom) a biphasic bar. Right: model response. The separation of the pair
of horizontal dashed lines in the model responses is a measure of the
amplitude of the bright Mach band.

suggested that the contour strongly stimulated edge detectors, and
these tended to inhibit the nearly bar detectors that signaled the
Mach bands at the foot and knee of the ramp. The effects of
neighboring structure on Mach bands does not reproduce well
on the printed page, so we have not attempted to show it here.
Suffice to show that the response-normalization model predicts
the phenomenon. Figure 9 shows how a biphasic bar positioned
in the middle of a trapezoid (Ratliff, 1984) reduces the magnitude
of the Mach bands in the model response. Why? In the normal
trapezoid, the relatively small-scale filters that give significant
responses to the foot and knee of the trapezoid are boosted
by response normalization because they are nevertheless more
weakly stimulated than the coarser-scale filters that respond to
the trapezoid as a whole. The biphasic bar is a powerful stimulus
to small-scale filters, enhancing their amplitudes and therefore
making them less subject to the effects of response normalization.
Hence weaker Mach bands.

DISCUSSION
We have shown that a bare-bones and simplified 1D model of
response normalization provides a good account of the conditions
in which Mach bands occur as well as when they do not occur.
As such this modeling exercise represents a “proof-of-concept”
alternative explanation of Mach bands to that of Feature models,
as well as to the more recent models of Mach bands based on
learnt image statistics (see below).

RELATIONSHIP TO FEATURE MODELS
In the local energy (Morrone and Burr, 1988) and N2+1+ (Wallis
and Georgeson, 2012) Feature models the edge-vs.-bar decision
is based at each point of the image on the relative responses of
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even- and odd-symmetric filters, implying a divisive relationship
between pairs of orthogonal-in-phase filter responses. This could
be construed as a special type of response normalization, one
in which one phase of filter response is “normalized” to that
of another filter response of orthogonal phase. However to this
author’s knowledge there is no physiological evidence for such
phase-specific response normalization. Although the goals of
Feature models and response normalization are arguably similar
(both are presumably designed to achieve the efficient coding of
visual information) the difference is that whereas in Feature mod-
els Mach bands are generated by a mechanism that is designed
to categorize spatial luminance changes into edges and bars, in
the response normalization model Mach bands are an emergent
feature of a general-purpose nonlinearity designed for efficient
coding.

Does feature coding play any role in Mach bands? If an
observer is required to make explicit judgments about the bands,
for example their position, width or apparent contrast, then
presumably some sort of feature coding mechanism must be
deployed. What is being argued here is that whatever this mech-
anism is, it is not the one that generates the Mach bands in the
first place. The corollary to this argument is that it is sufficient
to explain the appearance of Mach bands rather than have to
explain how observers make explicit judgements about Mach
band properties. This criterion of sufficiency is the same as that
used to validate the models of illusory brightness phenomena
that provided the inspiration for the present study (Blakeslee
and McCourt, 1999; Dakin and Bex, 2003; Blakeslee et al., 2005;
Robinson et al., 2007; Otazu et al., 2008). As with the model
here, these models are content with predicting the brightness
profiles of stimuli, obtained either from casual observation or
from brightness matching procedures.

OTHER EXPLANATIONS OF MACH BANDS
Although the aim of this communication is not to review all
explanations of Mach bands, it would be imprudent not to
mention one other. In keeping with their “empirical” approach
to visual illusions, Purves and Lotto (2003) argue that Mach
bands are the result of learnt image statistics. They suggest that
local luminance extrema similar in form to Mach bands are often
found on curved surfaces that are subject to particular patterns
of naturally-occurring illumination. As a result we have come to
expect such luminance extrema, and so tend to perceive them
as Mach bands even when they are not physically present. The
challenge for the empirical approach will be to determine whether
the variations observed in Mach band strength, size and position
that have been reported here and elsewhere can be as easily
explained by the physical luminance properties of images as by
response normalization.

LIMITATIONS OF PRESENT STUDY
This study has provided no new empirical data in support of the
model it proposes. In contrast, Wallis and Georgeson’s (2012)
N2+1+ Feature model of Mach bands was tested against a com-
prehensive series of measurements of the positions and visibilities
of Mach bands across a range of stimuli and was found to give
a very good account. The appeal of the response normalization

model however lies in its simplicity and physiological plausibility.
However the model needs to be tested against data for which
the predictions are different from those of Feature models, so
the challenge for the future will be to come up with those
predictions.
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