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Abstract—With the aid of a matching technique, the magnitude of induced brightness in bars bordered with
Craik~Cornsweet—0'Brien (CCOB) edges was investigated as a function of the width and amplitude of those
edges. Data were collected for stimuli with the sloping part of the edge on both the inside and outside of the
bar, and also for stimuli with both positive-going and negative-going edges. The results confirmed previous
reports that induced brightness was greater for CCOB stimuli with negative-going, as opposed to positive-
going, edges and greater for CCOB stimuli whose edges contained outer, as opposed {o inner gradients. A
madel of brighitness coding is offered to provide an explanation for the specific anisotropies observed, as well
as the general effects of stimulus amplitude and width on induced brightness. The model assumes that a
symbolic description of brightness is generated separately from each of a number of different-sized 2DG
(second difference of a Gaussian) filters, and the resulting brightness profile obtained by averaging across the
separate descriptions. The ability of other brightness models to account for the data is also discussed.

INTRODUCTION

The familiar Craik—Cornsweet—O'Brien (CCOB} illusion has prompted a good deal of
investigation over the last three decades (see review by Kingdom and Moulden, 1988),
largely because it is a striking anomaly in the subjective appearance of surface
reflectance that provides a challenge to any theory of brightness coding. The best
known version of the illusion is one which was first demonstrated by Cornsweet (1970),
and this is shown in Fig. 1.

The figure looks like a bipartite field, with the left half darker than the right, even
though the two halves have identical reflectances except in the small region defined by
the dividing contour. The critical feature of the contour, which we will refer to as the
CCOB edge, is that it consists of a combination of both a sharp and gradual change in
reflectance. Another version of the illusion is exemplified by the four classes of disc
stimuliin Fig. 2. The CCOB edges in each disc consist of a sharp discontinuity bounded
by a gradient on just one side (rather than having a gradient on both sides as in Fig. 1),
like the first published version of the CCOB (O’Brien, 1958). Each of the four discs in
Fig. 2is characterized by a combination of two factors: (a) whether the CCOB edge is a
negative- or a positive-going edge; and (b) whether the gradient is on the inside or the
outside of the sharp discontinuity.
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Figore 1. The Cornsweet illusion. The luminance profile of the stimulus is also shown.

The experiments described here were designed to measure the magnitude of induced
brightness in the central region of one-dimensional versions of the stimuli shown in
Fig. 2. The purpose of this communication is threefold: first, to show that the pattern of
induced brightness is different for the four classes of stimuli shown in Fig. 2; second, to
provide a computational model to account for those differences; and finally to compare
that model with other current models of brightness ¢coding.

There are previous reports of an anisotropy in the magnitude of induced brightness -
produced by positive and negative ‘cusped’ stimuli similar to those in Fig. 2. Hamada
(1985) found that the magnitude of induced brightness was greater for negative than for
positive cusped stimuli. He required his subjects to adjust the luminance of the regions
internal to the cusps until they appeared equal in brightness to the outer regions. In this
‘compensation method’ the magnitude of induced brightness was given by the
difference in luminance between the inside and outside areas at the PSE (point of
subjective equality). He measured the magnitude of the effect as a function of the width
of the CCOB edge for one amplitude (see Fig. 3) and found that while the magnitude of
induced brightness increased at the same rate with gradient width for both positive and
negative cusps, it did so by a greater constant amount for the latter. When gradient
width was held constant and amplitude varied, induced brightness increased mono-
totonically for the negative cusps, whereas for the positive cusps there was a small
increase followed by a reversal—a reversal implying that the central region appeared
darker than the surround. .

Todorovic (1987) presented demonstrations similar to those in Fig. 2 and remarked
that the magnitude of the effects in the stimuli with outer gradients appeared greater
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Figare 2, Four classes of CCOB discs. The stimuli are labelled as IP = inner positive-going; IN = inner
negative-going; OP = outer positive-going; ON = outer negative-going. The top pair (IP and IN) have the
sloping parts of the edge on the inside of the stimulus, while the bottom pair (OP and ON} have the sioping
part of the edge on the outside of the stimulus. The left hand pair (IP and OP) have positive-going edges, while
the right hand pair (IN.and ON) have negative-going edges. The luminance profile of each stisnulus is shown
below, along with a description of the terminology employed to describe the spatial dimensions of the stimuli,
For the actual experiments one-dimensional versions of these radial stimuli were employed.
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than that in the stimuli with inner gradients. However, he reported no quantitative
data. : . :

We begin by presenting data on the magnitude of induced brightness for the four
classes of pattern whose radial versions are shown in Fig. 2. We wished (a) to verify the
findings of Hamada (1985) using a different technique and a greater range of gradient
widths and amplitudes and (b) to provide quantitative data for CCOB patterns with

outer gradients; the aim was to establish a data base which would provide the. ...

foundation for quantitative modelling.
METHOD

Stimulus generation

All stimuli were generated by an 8-bit Pluto II graphics display system interfaced to a
Corvus Concept host computer. The programs were written in PASCAL using
ASMG68K assembly language subroutines to interface the host and graphics computers.
The stimuli were displayed on a Barco type 2 TVMR monochrome TV monitor. The
pixels on the screen were 0.69 mm in height by 0.33 mmin width subtending 2.03 by 0.98
arcmin respectively at the viewing distance of 114 cm. All luminance calibrations were
performed with a purpose-built photodiode and amplifier system with a photometric
filter. The aperture of the photodiode was positioned in front of the glass surface of the
monitor and the photodiode was focussed onto a small patch of pixels, whose grey level
had been preset.

Stimuli

We employed one-dimensional as opposed to radial stimuli The CCOB edge

luminance profiles were generated using a quarter cycle of a sinusoid:
Lix)=L,+ L, + L sin{(2n/dW)x +p), O0<x<W, Y

where L{x) is the luminance of the xth pixel, L, is the background luminance of
20.0cd/m?, L, is the Juminance amplitude of the edge, W is the width of the gradient
- and p is the phase of the underlying waveform. For the left and right inner gradients,
p = m and 3n/2 respectively, while for the left and right outer gradients, p = 3n/2 and =.
Positive and negative stimuli were produced with respectively positive and negative
values of L. :

The stimuli all subtended 9.75 deg in height. The test region in the stimuli with
CCOB edges was 1.6 deg in width. For the conditions with inner CCOB edges, three
edge widths were employed, 0.65, 1.3 and 2.6 deg, while for the stimuli with outer CCOB
edges only one width condition, 2.6 deg, was employed. The total stimulus width of the
three width conditions was thus 2.25, 2.9 and 4.2 deg respectively. For all stimulus
varieties six amplitude conditions were used, 0.5, 1.0, 2.0, 4.0, 8.0 and 16.0cd/m? above
(positive) and below (negative)} the mean value of 20 cd/m?, The match stimulus was a
bar whose width matched the total width of the test stimulus and whose fuminance was
adjustable by the subject. The central test region of both the match and test stimuli was
delineated by four short black vertical lines, cach 20 arcmin in length, positioned in the
four corners of the test region.

Subjects
The two authors acted as subjects. Both were experienced psychophysical observers,
one (FK) with normal and the other (BM) with corrected vision.
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Procedure

During an experimental session only one of the four classes of stimuli was displayed,
but the various width and amplitude conditions were presented in random order. On
each trial the test and match stimuli were alternated in time with a stimulus exposure
duration and ISI (inter-stimulus-interval) of 1s. During the ISI the screen was
homogenous with a luminance of 20.0 cd/m2. The task of the subject was to adjust the
luminance of the match stimulus until its central region appeared equal in brightness to
that of the test stimulus. For each condition each subject made a total of 10
measurements.

RESULTS

The results are displayed in Figs 3 and 4. In each figure, the results for the stimuli with
both inner and outer gradients are presented together. The figures show the amplitude
of the match bar (ordinate) required to match each stimulus as a function of the test
stimulus amplitude {abscissa}, for various gradient widths, and the two classes of
stimulus (inner or outer gradient). Figure 3 presents the results for the positive stimuli,
Fig. 4 those for the negative stimuli. It should be noted that the plots for the inner
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Figure 3. Results and model predictions for the stimuli with positive-going edges. The plots show the
amplitude of the match bar required to make a brightness match with the central test area of the CCOB
stimulus, as a function of the amplitude of the CCOB stimulus. Continuous lines = stimuli with inner
gradients; dashed line = stimuli with outer gradients; W = width of edge. (a) subject FK, (b) subject BM.
Positive values of test bar amplitude imply that the central test area appeared lightened, negative values that
the central test arga appeared darkened. In (c) the predictions from the model are shown for the conditions
shown in (a) and (b). The units in (c) are arbitrary. (Contd. on next page.)
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Figure 3. (Comd))
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Figure 4. As in Fig. 3 except for stimuli with negative-going edges. Note that in this plot positive values of
test-bar amplitude imply that the central test area appeared darkened, negative vajues that the test bar
appeared lightened. (a) FK, (b) BM, (¢) model predictions. The units in (c) are arbitrary.

{Contd. on next page))
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negative gradient (IN) and the outer positive gradient (OP) stimuli are presented with
the sign of their matched amplitude reversed in order that the shapes of their functions
with respect to amplitude can be directly compared with the remaining two conditions.
For the IN and OP conditions therefore, positive values show the degree of darkening
of the test region, whereas for the IP (inner positive) and ON (outer negative)
conditions, positive values show the degree of lightening of the test region.

DISCUSSION

The following are the main features of the data. _

(1) For both inner gradient (IP and IN) stimuli an increase in gradient width results
in a greater magnitude of induced brightness, whether the brightness induction was
negative or positive.

(2) For the IP stimuli an increase in amplitude results in an increase in induced
brightness followed by a downturn (except in the largest width condition for BM). In-
many instances the downturn goes through zero to negative implying that the central
test region appeared darkened. '

(3) For the IN stimuli there is no marked downturn at high amplitudes.

(4) For the OP stimuli the magnitude of darkening is greater at all amplitudes
compared with the magnitude of lightening in the IP stimuli and moreover in the
former there is no apparent downturn in the function at high amplitudes.

(5) There is little difference between the ON and IN conditions of the same gradient
width.
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We began with the intention of confirming previous reports of anisotropies in the
magnitude of induced brightness in CCOB figures depending on (a) whether the
stimulus had positive or negative going edges and (b) whether the sloping parts of the
edge were on the inside or outside of the test region. We have confirmed that, at least at
relatively high amplitudes, there is more induced brightness in negative-going than
positive-going ‘cusp’ stimuli, in fine with previous reports (Hamada, 1985). Moreover,

_ we have shown that, at least with positive gradients, the magnitude of induced

- brightiiess i greater for outer compared with inner gradient stimuli. We now describe a

model of brightness coding which is able to provide an account of the main resuits

described above and to provide a quantitative fit to the data to a first degree of
approximation.

A MODEL OF BRIGHTNESS CODING

The model we propose begins with the assumption that information about brightness is
carried in the postconvolution response profiles of neural filters whose principal
function is to detect the presence of local image features such as edges and bars. In the
model we employ filters whose spatial weighting function is the second difference of a

Gaussian (2DG}):
2 2 :
F(x)= —A(%-— 1) exp( 2; ) o))

where o is the space constant and A the gain of the filter. The gain A was set to 1/o
throughout: this scaling factor was found to give the best fit to the data for the
particular set of filters employed.

- This weighting function is a one-dimensional approximation to that of the receptive
field of a typical retinal ganglion cell. It must be pointed out at the outset that our use of
such a filter does not imply any commitment to the idea that brightness computation is
performed at the retinal level: indeed we have previously shown that most evidence
points to the cortex as the site of brightness computation (Kingdom and Moulden,
1988), and a recent study by Shevell (1989) provides further persuasive evidence.
Moreover, as we emphasise at the end of this communication, the physiological
implementation of our model could well be via two classes of filter, namely bar (even
symmetric) and edge (odd symmetric) filters in the cortex (Hubel and Wiesel, 1968; Burr
et al, 1989). We wish our model to be considered as a computational equivalent of
processes at least some of which are almost certainly cortical in origin and which may
involve at least two classes of feature detector.

In the illustrations given below, for clarity of exposition, we show the filter outputs as
both positive- and negative-going; for example, Fig. 5 shows the familiar response of a
2DG filter to an edge and a bar: the edge response is biphasic and the bar response is
triphasic. However, in keeping with the neurophysiological facts and with other
computational theories, in our modelling we rectify the positive- and negative-going
outputs of our model filter to reflect the fact that both ‘on-centre’ and ‘off-centre’
receptive fields respond to their preferred stimuli with an increase in firing rate; their
output cannot, of course, fall below zero. ‘

Up to this point there is nothing particularly novel in our approach. All current
computational models involve a convolution of the input image with some sort of filter,
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Figure 5. The response of a 2DG (second difference’ of 2 Gaussian) filter to an edge and a bar. The edge
response is biphasic, the bar response triphasic.

and any even-symmetric filter will give a biphasic rcspbnse to an edge and a triphasic

response to a bar.
We hypothesize that in the neural image the correlate of the contrast of a bar is the

magnitude of the central lobe in the triphasic response function, either its peak

amplitude or its ‘mass’ (the arca under the curve: its integral); we discuss- these
alternatives later.

In the case of an edge the correlate of contrast is the amplitude or mass of either of the
two lobes in the biphasic response (the two are identical in the case of a balanced filter
and perfectly correlated in the case of an unbalanced filter).

We also assume that there exist filters at different scales at any point on the retina and
that their outputs are pooled in some way (this too is not a novel idea; the idea was first
proposed by Wilson and Bergen (1979)); and further that the average size of the filters
increases with retinal eccentricity. _

The key novel features of our model are the following. First, we propose rules
according to which the response profiles might be interpreted as representing either
edge-like or bar-like stimuli. Second, we propose a ‘default-rule’ associated with
triphasic responses which eliminates the need for a deconvolution operation on the
overall filter response to recover the original luminance profile. Third, we incorporate a
physiologically plausible thresholding operation based on signal-in-noise consider-
ations. Fourth, the final description of brightness is computed as the average of the
individual filter descriptions (unlike MIRAGE (Watt, 1988), in which filter outputs are
pooled before the extraction of primitives). Finally, in order to account for certain
brightness anisotropies, we assume that ‘off-centre’ filters are on average larger than
their ‘on-centre’ counterparts.

The precise nature and significance of these features of our model will become clear in
the following qualitative description of its operation, which we have expressed as a set
of five ‘rules’. Subsequently we give a quantitative description of its impiementation
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and of its fit to the data. In a later section we discuss its properties and strengths in
comparison with those of a number of other current models of brightness coding.

Rule 1. Biphasic and triphasic response profiles have unique symbolic connotations
If the response profile of a filter is biphasic then it asserts the presence of an edge. If the
response profile of a fiiter is triphasic then it asserts the presence of a bar.

- .Rule.2. -Biphasic--and  triphasic responses carry different implications about stimulus
brightness .
(a) A biphasic response implies a step change in brightness whose magnitude is given
by the peak or mass of its profile. (b} A triphasic response implies a localized change in
brightness analogous to a rectangular function (though the precise shape may not be
rectangular). The magnitude of the brightness increment (or decrement) is given by the
peak or mass of the central lobe. In principle, information about the relative
luminances of the regions on either side of the stimulus producing the triphasic
response is also potentially available from a comparison of the magnitudes of the outer
lobes. However, in our model this aspect of the triphasic response profile provides no
information to the pooling mechanism that computes a final brightness value. -

Rule 2b is the most extempore of our assumptions. We are led to propose it because
we have discovered, despite an exhaustive inductive search for a computational rule,
that the luminance profiles of our CCOB edges cannot be recovered by a deconvolution
process involving the basic properties (peak, mass, standard deviation) of the three
zero-bounded response iobes, even in a noiseless system. While the latter can give a
good account for some classes of stimuli that generate a three lobed response (such as
those with symmetry or with only sharp edges) we were forced to abandon any idea of
such a deconvolution process in modelling our data, which are based on asymmetrical
stimuli with one sharp and one graded edge.

Note that not all filter responses are biphasic or triphasic in their response to our
stimuli. For example, Figure 9b shows that the largest filter gives a five-lobed response
to an OP (outer-positive) stimulus. In our model the symbolic feature description of
such a stimulus for this sized filter taken alone is that of a ‘triple bar’, since it consists of
three overlapping triphasic responses. The resulting description of brightness by such a

“response is as shown in the figure. This brightness description is of course subsequently
averaged with those of the smaller filters which do not produce a five-lobed response,
and the ‘triple-bar’ characteristic disappears in the pooling process.

Rule 3. Small response lobes are thresholded out
Consider the response of a 2DG filter to a bar (Fig. 5). The output profile is a
symmetrical triphasic function, the symmetry reflecting the fact that the two edges of
the bar are identical. Compare this with its response to a CCOB stimulus, in which one
edge i1s sharp and the other is graded (Fig. 6). The output profile is no longer
symmetrical: the negative lobe corresponding to the graded edge is wider and—
crucially—shallower than that corresponding to the sharp edge. The more gradual the
edge, the more marked the effect. Clearly, if we apply a thresholding operation to these
outputs at some point the shallow negative lobe will disappear, leaving only the large
positive central lobe and the negative lobe corresponding to the sharp edge: the
response is now biphasic, not triphasic, signalling ‘edge’, not ‘bar’.

Rather than simply assuming some brutal, arbitrary, clipping procedure we see this
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thresholding operation as an inevitable property of any noisy (and therefore any
practical) signal-processing mechanism. A signal lobe has to be detected against a
background of neural noise. As the amplitude of that lobe diminishes (with decreasing
stimulus amplitude or increasing edge width) there will come a point at which it will
simply be lost in the neural noise and effectively cease to exist: it has been thresholded
out in our terms.

The removal of below-threshold regions of response activity is, according to our

. model,-the .mechanism by which illusory induced brightness in the CCOB stimulizs=-+~ it

occurs. It effectively loses some of the information about the presence of gradual
luminance gradients, while preserving information about sharp ones.

Rule 4. Brightness descriptions from the individual filters are first independently computed
and then pooled

Like others, we assume that filters exist at a range of different spatial scales. However,
unlike MIRAGE (Watt, 1988) for exampile, in which filter responses are combined prior
to the stage of symbolic description, in our model the filters act independently and the
resulting symbolic description of brightness from each is computed separately and then
averaged.

Rule 5. There are different spatial weighting functions for ‘on-centre’ and “off-centre’
filters

The data reported in this paper, and other experiments described earlier, clearly show
anisotropies in the brightness response to positive and negative contrasts. In order to
account for these anisotropies we suggest that the spatial weighting functions of ‘off-
centre’ filters are wider than those for ‘on-centre’ filters. There is some support for this
notion which we describe later.

Having outlined the key features of the model we will now iliustrate its operation by
means of a few examples; in the course of this exposition we shall discuss some aspects
of the model in more detail. '

Figure 6 shows the response of a 2DG filter to a CCOB edge of various gradient
widths and amplitudes. As can be seen, as gradient width increases, the response
becomes less bar-like (triphasic) and more edge-like (biphasic). The change from
signalling ‘bar’ to signalling ‘edge’ is fairly sudden and occurs when the mass or peak
amplitude of the critical lobe (the right-most one in the figures) falls below threshold, or,
more specifically, gets lost in neural noise.

A given sized filter will thus signal ‘edge’ to a wide-gradient CCOB edge, but ‘bar’ to a
narrow-gradient CCOB edge, and this is the model feature that enables us to account
for the effect of gradient width on the magnitude of induced brightness scen with the
positive (IP) and negative (IN) ‘cusp’ stimuli.

Figure 6 also shows how increasing amplitude produces the opposite change from
that produced by increasing gradient width: as amplitude increases a point is reached
when the third critical lobe goes above threshold and the signal changes from ‘edge’ to
‘bar’. The effect of the change from ‘edge’ to ‘bar’ at a critical stimulus amplitude is the
feature which allows us to account for the collapse of the illusion at high amplitudes
which occurs with our OP (outer positive) stimuli.

A single-filter model based upon the above rules predicts the overall qualitative
effects of both gradient width and amplitude shown in Fig 3ab and Fig. 4ab.
However, the computed functions do not reflect the gradual change in the empirical
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Figure 6. The response of a 2DG filter to CCOB edges varying in {a) edge width and (b}amplitude. The zero
response ievel is indicated by the dotted iine while the threshold level on the negative lobes is indicated by a
dashed line. Only the smallest edge width condition in (a) produces a triphasic *bar’ response, the remaining
edge width conditions producing an ‘edge’ response. In (b) only the largest amplitude cordition produces a
triphasic ‘bar’ response, the remaining conditions produce a biphasic ‘edge’ response.
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Figure 7. Effect of filter size on feature encoding with a CCOB ed

ge. Because of thresholding, only the largest
filter produces a triphasic

‘bar’ response. The two smalier filters produce biphasic ‘edge’ responses,
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* Figure 8. Different sizes of ‘on’ and ‘off’ centre filters result in a different feature code for a positive as opposed
1o negative gradient CCOB stimuius. Note that the spatial weighting function of the *off centre filter is
Mlustrated as if it were an ‘on’ centre unii. This is in order that its rectified response profile can be shown asa
negative response, below that of the ‘on’ centre filter. After thresholding, only the left hand positive gradient
CCOB stimulus produces a triphasic ‘bar’ response, while the negative gradient CCOB produces & biphasic
‘bar’ response.

functions that occur as stimulus amplitude changes. The computed functions predict a
much sharper increase in the magnitude of induced brightness with stimulus amplitude,
followed by a sudden and dramatic decrease. This mismatch disappears if we suppose
that a range of filters of different spatial scale is involved.

Figure 7 shows the response of a set of different-sized filters to a given CCOB edge.
As can be seen, while the two smallest filters will signal ‘edge’, the largest will signal
‘bar’. If one were to increase the gradient width, the large filters would one after another
change their signals to ‘edge’. If one were to increase stimulus amplitude, the smalier
filters would one after another change their response to ‘bar’. This feature of the model,
whereby a given stimulus produces different symbolic descriptions in the different-sized
filters, together with the hypothesis that the final description of brightness is computed
as the averape of those individual filter descriptions, are the properties that emulate the
smoothly changing functions seen in the data, particularly in the wide-gradient
conditions of Fig. 3 and 4.

The anisotropies between the positive and negative stimuli occur, we suggest,
because the receptive fields of ‘on’ and ‘off” centre filters have different spatial weighting
functions. In keeping with electrophysiological evidence (Schiller, 1986) we assume that
the filter responses are rectified in the sense that the positive and negative components
of the filter response are carried by increases in the firing rate of ‘on’ and ‘off centre
filters respectively. We suggest that the ‘off’ centre filters have on average larger space
constants. The effect of this anisotropy on the processing of the stimuli employed here is
iliustrated in Fig. 8. In this figure, the positive CCOB stimulus is encoded as a ‘bar’
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Figure 9. The symbolic description of brightness from the largest filter for: (a) a high amplitude CCOB
stimulus with a positive inner gradient; and (b) a CCOB stimulus with a positive outer gradient. In both, the
presence of a ceniral negative response lobe is interpreted as a negative going central bar, whose brightness
description is then averaged with those from the smalter filters. Because of the contribution from the large
filters, the central test region appears darkened in both {a) and (b).
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Figure 19. The individual responses (b)to a CCOB stimulus (a) with a positive inner gradient for the range of
filters employed. (c) illustrates separately the symbolic descriptions of brightness produced from each filter
response while (d) shows the final computed brightness description, which is the average of the descriptions
in (c).

because the ‘off’ centre filter response produces two above-threshold lobes, thus
producing a triphasic response for the stimulus as a whole. On the other hand, for the
negative CCOB stimulus, the smaller ‘on’ centre filter produces only one above-
threshold lobe and hence signals an ‘edge’.

Figure 9 illustrates how the model accounts for: (a) the change from induced
lightening to induced darkening at high contrasts in the PI stimulus; and (b) the lack of
a turnover at high contrasts for the stimuli with outer gradients. In both cases the
largest sized filter signals the presence of a central bar whose contrast in Fig, 9aisin the
opposite direction to that of the induced lightening while in Fig. 9b it is in the same
direction as that of the induced darkening, '

Figure 10 illustrates how the brightness descriptions for the different sized filters are
combined to produce the final brightness percept.

For the purposes of this paper we have not attempted to describe quantitatively the
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complete brightness profiles of our CCOB stimuli as encoded for each filter output, nor
therefore the final brightness profile resulting from their combination. To do this would
require at the very least a description of the degree of blur of the features (edges and
bars) encoded by each filter. This is outside of the scope of our modet as it currently
stands: its specific requirement was to describe quantitatively only the difference in
brightness between the central test region and the background. The symbolic
brightness profiles shown in Figs 9.and 10-are therefore meant to be only approximate

descriptions, except in the region of the background and central test areas. Note alsoin

Fig. 10c that the brightness profile encoded by the two smallest filters is homogenous
for the central test region. For these filters the discontinuities in the stimulus produced
biphasic responses and were therefore encoded as edges producing step changes in
brightness. Since there were no discontinuities between those edges, the step changes
were continued unabated across the central test region. This can be regarded asa
‘filling-in’ process, but only at a symbolic level. It is a computational procedure, and
does not imply any spreading of neural excitation between the edges to produce a
pattern of neural activity isomorphic with the brightness profile (see section entitled
‘Comparison with other models’ for a further discussion of the nature of “filling in’
processes).

Details of model implementation _
To implement our model we employ a thresholding operation which simulates a
plausible physiologicai mechanism, and is essentially identical to the thresholding
mechanism employed in the MIRAGE model of Watt and Morgan (1985). Random
noise is added to the fiiter response prior to rectification: the response at each point
along the response axis R(x) is allowed to deviate by a randoim amount within the limit
imposed by the noise level Q such that — Q < R(x) < Q. The response is then separated
into its above-zero and below-zero components R(x)and — R(x), and potential signals
in both arrays are identified as areas of response activity that are bounded by zero
response on either side. _ .

These potential signals have both a mass (area) and a peak amplitude. Whichever of
these primitives is chosen to encode brightness, all signals whose mass or peak
-amplitude falls below a threshold level are ignored. The threshold level was chosen to
be that level which just ensured that signals could not occur by chance (p < 0.01) in
noise alone. The model predictions shown in Figs 3¢ and 4c employed mass as the code
for brightness because the fit was superior to that of peak amplitude for the particular
filter parameters chosen. Nevertheless, a model assuming peak amplitude as the
primitive can also simulate the overall differences found between the different classes of
- stimuli we used and at this stage we are not able to rule out peak amplitude as the
primitive for brightness. However, our initial findings indicate that in order to make
peak amplitude provide a good fit to the data the filters have to be significantly larger
than the ones required if mass is assumed to be the primitive. See below for a discussion
of the filter sizes we employed.

Figure 11 illustrates the processes of adding noise and signal extraction. We applied
a compressive non-linearity on the output to the filter, in keeping with neuro-
physiological evidence (Robson, 1975) as well as psychophysical evidence showing
Weber-like behaviour for contrast discrimination thresholds (Wilson, 1980; Whittle,
1986). We have ignored the effects of the non-linearities in photoreceptor transduction
which result from retinal adaptation to the prevailing light level (Shapley and Enroth-
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STIMULUS

RESPONSE

Figure 11. The mechanism of thresholding. Random noise is added to the filter response, and areas of zero
bounded activity in both the positive and negative profiles are isolated. Only those whose peak amplitude or
mass exceeds a threshold are then accepted as signals, and these are indicated by arrows. This mechanism of
thresholding fotlows that of MIRAGE (Watt and Morgan, 1985},

Cugell, 1984) since mean background luminance was fixed throughout the experiment.
The output non-linearity is achieved by transforming the response R(x) logarithmicaily
using the equation

R'{x)=sgn (R(i)) (1 +In{JR(x}(}). | (3)

The effect of such a transform allows slightly smaller filters to be used in the model,
since the transform has most of its effect in reducing the magnitude of the very tall lobes
signalling ‘edge’ in the small filters.

Estimates of test-background differences were also made for the match stimulus over

- arange of amplitudes. Since both test and match stimuli were on the same background,

the amplitude of the match stimulus which was computed to give the same test-
background brightness difference as that of the particular CCOB condition under
investigation is taken as the model prediction for that condition.

The model predictions of test-background brightness difference for a given stimulus
were computed by averaging the estimates over 100 trials, with 25 iterations for each of
the four different-sized filters. On each trial fresh noise was added to the fiiter response.

Range of filter sizes employed

For the stimuli with outer gradients, whose sharp edges were the closest to the fovea,
the space constants (see equ. 2) for the ‘on’ centre cells were 2,4, 8, and 16 arcmin; for the
‘off" cells, they were 3, 6, 12 and 24 arcmin. These values resulted in excitatory centre
widths which ranged from 4.7 to 37 arcmin for the ‘on’ filters, and inhibitory centre
widths of 7.1 -56 arcmin for the ‘off filiers. For the remaining stimuli the filter sizes were
scaled upwards depending on the position of the sharp discontinuity of the stimulus in
peripheral vision (central fixation was employed throughout the experiments). On the
basis of the rule of thumb that filter sizes roughly double with every 4 deg of eccentricity
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(Wilson, 1978), the scaling resulted in space constants for the widest gradient condition
in the range 3.1-25.0arcmin for the ‘on’ centre filters and 4.6-37 arcmin for the ‘off’
centre filters. This method of scaling may have exaggerated the effects of eccentricity
since the gradient part of the stimulus, being on the inside, would stimulate slightly
smaller filters than the ones at the sharp discontinuity. Nevertheless, the scaling gives
an engineering approximation to the changes in filter size that one might expect for the
processing of the stimulus as a whole. :

Model predictions

The predictions of the model are shown in Figs 3c and 4c, alongside the empirical
resuits. The fit is closer to the data of FK than those of BM, though a better fit to BM’s
results could easily be obtained by reducing the size of the ‘ofi’ centre filters by a
constant. It is, however, more likely that the differences between subjects reflect
criterion differences rather than differences in the properties of the underlying
mechanisms. We have not attempted to finely tune the parameters of the model to fit
the data exactly; our aim is simply to show that the principal qualitative relationships
between the various conditions are accounted for by the model.

Other evidence for the model

The model of brightness that we have outlined above is of necessny speculative, and
there is little external evidence for some of its assumptions. Nevertheless, there are a-
couple of previous findings which are consistent with the main features of the model.

Firstly, Tolhurst (1972) suggested that there might be reciprocal inhibition between
edge and bar detectors, in order, for exampie, to prevent bars being seen on either side of
an edge (both ‘bar’ and ‘edge’ detectors are stimulated by an edge). He also suggested
that such reciprocal inhibition might underlie the observation that a thin line
positioned along an edge substantially reduces the apparent contrast of that edge. This
finding is exactly what would be predicted by the model described here. The thin
contour would produce a ‘bar’ signal in the smallest filter, and therefore remove its
contribution to the perceived contrast of the edge. However, some perceived contrast
would remain since the larger filters would not be stimulated by the thin contour, but
--would be driven by the edge.

Secondly, there is some independent ev1denoe in support of thc suggestion that ‘of?
and ‘on’ centre cells may have different spatial weighting functions. Du Buf and Roufs
(1985) measured detection thresholds and brightness for both incremental and
decremental discs as a function of disc area against a fixed reference background. The
area beyond which there was no further effect of area on brightness was found to be
about 0.6 log area units greater for the decrements than for the increments (in our
‘modelling the ‘off filters were about 0.4 log area units greater than the ‘on’ units).
Du Bul and Roufs suggested that this indicated a broader point spread function for
decrements. There is also some supportive neurophysiological evidence for larger ‘off”
centre receptive fields (Hammond, 1974; Van Erning et al., 1988).

Anisotropies in the brightness and saliency of stimuli depending on whether they are
greater or lesser in luminance than the surround have been frequently reported in a
number of studies of brightness phenomena: Heinemann (1972) and Moulden and
Kingdom (1989) with simultaneous contrast; Jory and Day {(1979) with Kanizsa’s
triangle; Spillman and Levine (1971) with the Hermann Grid illusion; Legge and
Kersten (1983) with contrast discrimination; Kingdom and Moulden-(1989) for the
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detection of line signals in visual noise, to cite but a few examples. The anisotropy has
been attributed to a nonlinear, Weber-like transform of input intensity at an early stage
in visual processing, which, if taken into account, gives symmetry to the results of some
of the data with increments and decrements (Legge and Kersten, 1983; Burkhart et al.,
1984; Whittle, 1986; Kingdom and Moulden, 1989). Essentially, the difference inthelog
transformed luminance between the signal and its background (the suggested correlate

... .0f perceived contrast) will have a larger absolute value in the case of a decrement than

for an equal amplitude increment. However, such an explanation could not account for
the anisotropies between the CCOB figures with positive and negative gradients found
here and elsewhere (nor indeed will it for some of the other anisotropies mentioned
above as we have discussed before, Moulden and Kingdom, 1989). First, consider the
range of amplitudes within which the CCOB illusion is manifest: if the negative cusps
were represented internally with a higher value than their equal-amplitude positive
cusp counterparts, so also would their respective match stimuli, and thus the
anisotropy would not be expected to reveal itself. Second, consider the stimulus
amplitude at which the illusory brightness would be expected to break down on the
nonlinear transform interpretation. If the internal representation of the negative cusps
was of a higher value than the positive cusps, one would expect the illusion, if anything,
to collapse at a lower amplitude than for the positive cusps, the opposite of what is
found.

We turn now to a comparison of our model with other current models of brightness
coding. We (Kingdom and Moulden, 1988) have previously categorised brightness
models into essentially three classes: contrast sensitivity function (CSF) models,
lightness integration models, and edge detector models; the model described here falis
into the third category, which we shall refer to below by the more general term ‘“feature
detector’ models. We will discuss the other candidate models within this framework.

CSF (Contrast Sensitivity Function) models

It is axiomatic that low-frequency attenuation in contrast sensitivity is ultimately
responsible for the illusory induced brightness in CCOB figures. However, the question
is: can the CSF, which contains an explicit description of such attenuation, be used to
model the magnitude of induced brightness quantitatively as a function of, for example,
contrast? We have previously reviewed the extent to which the CSF can successfully
predict the pattern of induced brightness in CCOB figures (Kingdom and Moulden,
1988), and so only a few comments will be made here. Essentially, the CSF is reasonably
accurate in predicting the appearance of CCOB figures such as the MF (missing
fundamental) square-wave (Campbell et al, 1971) and the Cornsweet figure (Corn-
sweet, 1970) up to contrasts at which the figures become distinguishable from their step-
edge relatives (in the case of an MF stimulus, a normal square-wave; in the case of a
Cornsweet stimulus, a step-edge).

A simple and plausible rule suffices to account for the appearance of low contrast
CCOB figures. This is the ‘default to square-wave’ rule and it states that, in the case of
the MF display for example, the stimulus will appear indistinguishable from a square-
wave until its missing component (the fundamental) would become independently
detectable (Campbell et al., 1971). The problem with the CSF approach, however, is
that at contrasts above that at which the missing low-frequency components become
independently detectable in CCOB figures in general (and therefore at contrasts at
which such stimuli are distinguishable from their step-edge relatives) illusory
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Figure 12, Predictions from the Retinex model of Land and McCann (1971). The graph plots the (log) match
bar amplitude which matched a CCOB stimulus for computed brightness as a function of the {log) amplitude
of the laiter, for three gradient widths (W). The shapes ofthe functions would be the same (except for polarity)
for ali the four CCOB stimuii empioyed here.

brightness continues to exist, and the simple ‘default to square-wave ruie’, by definition,
becomes inapplicable. To overcome this problem, Docley and Greenfield (1977)
employed a modification of the rule in which the difference in brightness between a
Cornsweet figure and its step-edge relative was correlated with the difference in their
respective power spectra (after attenuation by the CSF). This, however, now produced

.. an_overestimation of_the magnitude. of induced . brightness at high contrasts:.a. . ..

reasonable description of the data was only possibie using a CSF which changed its
shape with contrast, specifically by reducing the degree of low-frequency attenuation
monotonically with increasing contrast. While this latter manipulation is consistent
with some psychophysical evidence (Blakemore et al., 1973; Georgeson and Sullivan,
1977, though see Kulikowski, 1976) it is ciear that the initially most attractive feature of
the CSF approach (its simplicity) has now been lost. Leaving that aside, the fit to the
data that Dooley and Greenfield achieved still-has only the status of a mathematical
description, rather than a physiologically plausible computational model. The key
issue remains unresolved: how might the visual system compute the properties of the
(transformed) power spectra that would allow the relevant comparison of the CCOB
stimuli with their step-edge relatives? Given the (now almost universally accepted) view
that the description of the spatial frequency content of the visual scene is carried in a
piece-wise fashion by spatially localised band-pass filters in the cortex, rather than as a
-global description, it is clear that the CSF approach to CCOB iliusory brightness has
little predictive value in terms of understanding the nature of the underlying
mechanisms (other than to say that they are linear at, or near to, threshold).
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Figure 13. Predictions for the Land {1985) brightness model. The stimulus is convolved with a balanced filter
cousisting of a one pixel wide excitatory centre and a 40 pixel wide inhibitory surround. Brightness is encoded
directly as the response of the filter. The CCOB illusion is not predicted for a Cornsweet (1971) figure.

Lightness integration models

This important class of brightness models originated from the need to account for
‘lightness consiancy’: the apparent constancy of lighiness and hue in the contexi of wide
variations in the intensive and spectral content of illumination. All lightness integration -
models employ four stages. They are: (i) a nonlinear (usually log) transform of the
luminance profile; (ii) differentiation of the (transformed) luminance profile; (iii)
thresholding; and (iv) reintegration. The key property of the models in the present
context is the third, thresholding, stage. This stage has the purpose of removing any
gradual luminance gradients in the image, such as, for example, gradual gradients in
illumination. Thus in principle lightness integration models will predict the Cornsweet
illusion since the thresholding stage will remove the signal for the gradient part of the
edge, while preserving the sharp discontinuity.

Figure 12 shows the predictions generated by an implementation of the earliest
lightness integration model, the Retinex model of Land and McCann (1971), for the
stimuli employed in the experiments described here. While the effects of gradient width
and amplitude are qualitatively predicted for the inner gradient stimuli, the shapes of
the functions are clearly inaccurate. More importantly, however, the Retinex modei
would predict no difference in the magnitude of brightness for the inner- and outer-
gradient conditions. The more sophisticated versions of lightness integration models
{Horn, 1974; Blake, 1985) will also suffer from this defect.

Land’s (1985 ) model

A common criticism of lightness integration models is their failure to predict
simultaneous contrast effects (Hurlbert, 1986; Reid and Shapley, 1987). Indeed the aim
of such models is the correct recovery of reflectance, whereas the phenomenon of
simultaneous contrast implies errors in reflectance recovery. Partly to overcome this
criticism, Land (1985} has suggested that brightness may be modelled using a filter with
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a small excitatory centre and large inhibitory surround. The brightness of the image is
given as the logarithm of the convolution output of the filter with the input luminance
profile: no deconvolution or integration process is required. Strictly speaking,
therefore, Land’s (1985) model is not a lightness integration model. We have included it
in this section, however, since it developed out of the Retinex model. In the model
gradual illumination pradients are eliminated by virtue of the fact that the filter is
unresponsive to linear gradients in luminance. Simultaneous contrast -effects are
_predicted. However, the Cornsweet illusion is not predicted by this model as is
illustrated in Fig. 13.

Feature detector models

Like the model we have proposed here, all feature detector models which deal with
brightness computation begin with the idea that brightness coding is linked to the
mechanism which generates a symbotic description of salient focal features in the image
such as edges and contours. The feature detection model which we examine first is the
-one which has dealt most explicitly with brightness: the neural network model of
Grossberg and his co-workers (Cohen and Grossberg, 1984; Grossberg and Todorovic,
1988).

Grossberg’s spatial averaging model
The central feature of this model, and of an essentially similar model by Hamada
(1984), is that brightness is encoded by the average response of an even-symmetric
filter within regions of the image bordered by sharp luminance discontinuities. Since
the correlate of brightness is this average response we refer o the model as a spatiai
-.averaging model. Grossberg and his co-workers place much emphasis on the presumed
neurophysiclogical implementation of the spatial averaging process: in their model
it occurs as a result of a diffusive spread, or ‘filling-in’, of neural activity within a
contour-bounded region, resulting in a region of homogenous neural activity which
. .isomorphically defines the brightness profile on a point by point basis. We (Kingdom
--and Moulden, 1988) and others (Foster, 1983; Laming, 1983) have argued against
the logical requirement of such a filling-in process, whose proponents implicitly assume

... that.it.is necessary. to.produce an isomorphic. spatial mapping.of internal response

to percept. However, the suggestion that the spatial average is the code for brightness
is not in fact contingent on the existence of a filling-in mechanism such as that
postulated by Grossberg and his co-workers, and therefore remains a viable possibility.

A necessary requirement of spatial averaging models is that the filter whose output is
averaged is unbalanced. Such models employ a filter whose spatial weighting function is
an approximation to the receptive field of a retinal ganglion cell, but whose excitatory
centre is more heavily weighted than the surround. The filter therefore gives a DC
response to homogenous light stimulation. This is necessary because if the filter were
balanced the brightness response for a homogenous disc computed by spatial
averaging would rapidly approach zero as the disc increased in size.-

Grossberg’s spatial averaging model qualitatively predicts the Cornsweet illusion
because the part of the model which detects the contours within which spatial
averaging takes place is thresholded. Only the sharp discontinuity is reflected as a
contour, the gradients on either side falling below threshold. The spatial averaging
process results in a difference in average response activity in the regions on either side of
the sharp Cornsweet edge, thus producing the illusory brightness difference.
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This model has the important advantage over lightness integration models in that it
predicts some important phenomena such as simultaneous brightness contrast.
Unfortunately, only qualitative demonstrations have been used to test the model, and
no quantitative data on CCOB stimuli have been produced. Since the exact
implementation of the model is complex and indeterminate we have not attempted to
apply it to our results. The data reported here would present an informative challenge

_to the model; it would be interesting to see how it might meet that chailenge.

" While it is not the purpose of this report to provide a detailed critique of the spatial
averaging model, it is worth noting a coupie of the more important criticisms. Firstly,
although most retinal ganglion cells are slightly unbalanced, resulting in a response to
even illumination, this is simply not the case for cortical cells which invariably do not
respond to homogenous light stimulation (Robson, 1975): and, as we have said, it is
almost certainly the cortex which is the site of brightness computation. Secondly, the
model cannot account for ‘transitivity’ effects in induced brightness. Arend et al. (1971)
first showed that the induced brightness on either side of a radial Cornsweet edge
‘carried acrosss’ suitably placed rings in those regions, as well as into the rings
themselves (see also Kingdom and Moulden, 1988). Since the spatial averaging process
in Grossberg’s model is contour-bounded, such an effect would not be predicted.

Kingdom and Moulden (1988) model for the Cornsweet illusion :

In this model the brightness difference across a Cornsweet edge was given by
integrating the masses of zero-bounded regions in the response profile of a 1DG (1st
Difference of a Gaussian) filter, The 1DG model, while essentially in the ‘feature
detector’ tradition, had some features in common with the Retinex model the

employment of a 1DG filter and the integration of zero-bounded response regions are -

- formally identical to the differentiation and integration stages in the Retinex model; the

principal difference between the two models lay in the nature of the thresholding stage.

As in the modified model proposed here to account for our more recent data, the
illusory brightness in the Cornsweet figure was held to result from the curtailing of
lobes in the filter response by noise. While the original model provided a good fit to
earlier data collected on the Cornsweet illusion (sce Kingdom and Moulden, 1988)
it cannot account for the anisotropies of induced brightness in the CCOB stimuh
described here. Specifically, the simple integration of zero-bounded masses from a
1DG (or indeed any) filter cannot predict simultaneous contrast effects, and it is
difficult to see how any differences between’ positive and negative-going stimuli could
be produced by any odd-symmetric filter.

Watt and Morgan's MIRAGE model

Although this model (Watt and Morgan, 1985) was formulated principally to account
for data obtained with positional acuity tasks, Watt (1988) has provided a hint of how
brightness might be extracted from the symbolic description that the MIRAGE
algorithm generates. In MIRAGE, the positive and negative components of the
responses of an array of 2DG (2nd Difference of a Gaussian) filters of different space
constants are separately combined prior to the stage at which zero-bounded response
regions are isolated. From such regions a symbolic feature description is generated,
with biphasic and triphasic responses being encoded as edges and bars respectively, as
in our model. Watt (1988, p. 42) suggests that the amplitude of luminance change (and
hence its correlate in brightness) of bars and edges might be signalled by the product of
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the mass and the standard deviation of the relevant response lobes (for a bar this would
be the central lobe). However it is not clear what contribution, if any, the two outer
lobes of a triphasic (bar) response make to the computation of brightness. As the
model stands, these would have to be taken into account in some way, otherwise any
luminance difference on either side of a bar could never be recovered during the
brightness computation. However, as we noted earlier, we have been unable to discover
any computational rule for recovering the luminance profile of stimuli with asymmetric

edges (like CCOB edges) from the properties of the three zero-bounded response lobes: ..

in the outputs of noise-free 2D@G filters.

In our model we avoid the need for recovering brightness information from ali three
. lobes in a triphasic response. We do this by allowing a description of brightness to be
computed separately for each size. of filter. The luminance difference on either side of a
thin contour will be carried by the larger filters which will be unresponsive to the
contour itself. There will be, as found perceptually, a reduction in brightness contrast
across the contour since the small filters will signal ‘bar’ (without the contour they
would signal ‘edge’ and add their brightness contrast signal to the pooled response). It is
hard to see how MIRAGE would account for the anisotropies in the CCOB stimuli
described here without the incorporation of additional rules similar in effect to our
pooling rules. What we conclude is not that MIRAGE is in this respect incorrect, but
merely that it is incomplete. '

Maorrone and Burr model of phase congruence
This model (Morrone and Burr, 1988) offers an elegant and plausible explanation of
how the visual system might detect both the presence and the location of salient
features in the image, particularly edges and bars. The starting point of the model is that
the position of edges and bars in the image can be determined from the points at which
their individual Fourier components come into phase alignment with each other. The
idea is that these points of ‘phase congruence’ are also detected by the human visual
system. They are detected as peaks in ‘local energy’, where local energy is defined as the
.square root of the sums of squares of the responses of both odd and even-symmetric
filters in the cortex. The nature of the feature is obtained by comparing the position of
the peak in local energy with the position of the peak response {rom each of the two
“classes of filter. If the peak in local energy coincides with that of the evén-symmetric
filter, the stimulus is a bar; if it coincides with the peak of the odd-symmetric filter, the
stimulus is an edge. The model has the particular advantage over other feature
detection models in that it agrees well with both neurophysiological and psychophys-
ical evidence for edge and bar detectors in the visual cortex (Hubel and Wiesel, 1968;
Burr et al., 1989).

However, it is by no means clear how it might account for the anisotropies we
describe here or indeed for the appearance of Cornsweet edges in general. The critical
test which we argue would defeat the model is the effect of contrast on the appearance of
a Cornsweet edge. As a number of investigators have shown {for example Isono, 1979;
Burr, 1987) the magnitude of induced contrast in a Cornsweet edge as a function of its
amplitude follows an inverse U-shaped function. Moreover, the appearance of the
actual discontinuity in the Cornsweet changes with amplitude: at low contrasts it is
decidedly edge like, while at high contrasts it appears as a double (a bright and a dark)

bar. Since the phase-congruence model is linear, the positions of the peaks in both the

odd- and even-symmetric filter functions, as well as the local energy function, will

o e g L



126 B. Moulden and F. Kingdom

remain invariant with stimulus amplitude. Moreover, the relative amplitudes of those
peaks will remain in strict proportion. If both the positions and relative amplitudes of
all three signals remain invariant with stimulus amplitude, the feature content of the
stimulus should also not change. It is also worth noting in passing that the phase-
congruence model would make the rather implausible prediction that sinusoidal
gratings are featureless since (sin’ + cos?) =1 everywhere (M. A. Georgeson, pers.
comm.),

SUMMARY AND CONCLUSIONS

We conclude that current models of spatial vision that address the issue of brightness
coding (including our own eatlicr model) are unable to account for the quantitative
data we have gathered concerning the effects of gradient width and amplitude on the
magnitude of induced brightness in stimuli with CCOB edges.

We are led to propose an extension of our original model. The important new
features are first that the final brightness signal is computed by pooling the outputs of
filters at different spatial scales whose individual brightness signals are independently
computed before pooling, and second that triphasic (‘bar’) signals carry information
only about the contrast of the bar and not information about any differences that may
exist between the luminances on either side of it.

This model has all the explanatory power of our carlier model, and is in addition able
to give a good quantitative account for the data reported here. We need to modify a
previous conclusion (Moulden and Kingdom, 1989) that computational models of
brightness coding must be prepared to integrate the outputs of more than one class of
spatial filter: we now conclude that biphasic and triphasic responses are pooled
according to different rules. ) '

Two final points need be made. First, while the model employs the same filter to
signal the presence of both edges and bars, it is quite probable that at the physiological
level there are separate edge and bar detectors, as we stated earlier. If this is so, then one
of a number of possible ways that our model could be implemented physiologically
would be through inhibition of edge detectors by same-scale bar detectors. This would
implement the rule we employed which states that the presence of a triphasic response
in the 2DG filter of given spatial scale implies no brightness difference across the
discontinuity.

Second, it should be noted that the brightness coding rules in the model that we have
described are essentially post hoc. Although precise and computational, the model does
not itself constitute part of a computational theory, in that the rules we propose derive
from our attempt to model one particular set of data rather than flowing from a full
theory of brightness coding. However, as we argued in the text, the model has a number
of strengths: not the least of these is its explicitness and consequent susceptibility to
empirical ¢valuation.
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